Properties

Label 3.5e2_67e2.4t4.1c1
Dimension 3
Group $A_4$
Conductor $ 5^{2} \cdot 67^{2}$
Root number 1
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$3$
Group:$A_4$
Conductor:$112225= 5^{2} \cdot 67^{2} $
Artin number field: Splitting field of $f= x^{4} + 11 x^{2} - 5 x + 29 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $A_4$
Parity: Even
Determinant: 1.1.1t1.1c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in $\Q_{ 53 }$ to precision 5.
Roots:
$r_{ 1 }$ $=$ $ 31 + 10\cdot 53 + 47\cdot 53^{2} + 29\cdot 53^{3} + 41\cdot 53^{4} +O\left(53^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 36 + 36\cdot 53 + 28\cdot 53^{2} + 41\cdot 53^{3} + 51\cdot 53^{4} +O\left(53^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 44 + 21\cdot 53 + 38\cdot 53^{2} + 31\cdot 53^{3} + 38\cdot 53^{4} +O\left(53^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 48 + 36\cdot 53 + 44\cdot 53^{2} + 2\cdot 53^{3} + 27\cdot 53^{4} +O\left(53^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 4 }$

Cycle notation
$(1,2,3)$
$(1,2)(3,4)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 4 }$ Character value
$1$$1$$()$$3$
$3$$2$$(1,2)(3,4)$$-1$
$4$$3$$(1,2,3)$$0$
$4$$3$$(1,3,2)$$0$
The blue line marks the conjugacy class containing complex conjugation.