Properties

Label 3.3e4_7e4.42t37.1c2
Dimension 3
Group $\GL(3,2)$
Conductor $ 3^{4} \cdot 7^{4}$
Root number not computed
Frobenius-Schur indicator 0

Related objects

Learn more about

Basic invariants

Dimension:$3$
Group:$\GL(3,2)$
Conductor:$194481= 3^{4} \cdot 7^{4} $
Artin number field: Splitting field of $f= x^{7} - 7 x^{4} - 21 x^{3} + 21 x^{2} + 42 x - 9 $ over $\Q$
Size of Galois orbit: 2
Smallest containing permutation representation: $\PSL(2,7)$
Parity: Even
Determinant: 1.1.1t1.1c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 17 }$ to precision 7.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 17 }$: $ x^{3} + x + 14 $
Roots:
$r_{ 1 }$ $=$ $ 15 a^{2} + 15 a + 5 + \left(10 a + 14\right)\cdot 17 + \left(8 a^{2} + 9 a + 9\right)\cdot 17^{2} + \left(5 a^{2} + 7 a + 10\right)\cdot 17^{3} + \left(2 a^{2} + 7 a\right)\cdot 17^{4} + \left(6 a^{2} + 6 a + 8\right)\cdot 17^{5} + \left(12 a^{2} + 8 a + 5\right)\cdot 17^{6} +O\left(17^{ 7 }\right)$
$r_{ 2 }$ $=$ $ 10 a^{2} + 5 a + 12 + \left(12 a^{2} + 15 a + 10\right)\cdot 17 + \left(14 a^{2} + 3 a + 13\right)\cdot 17^{2} + \left(12 a^{2} + 3 a + 15\right)\cdot 17^{3} + \left(9 a^{2} + 8 a + 6\right)\cdot 17^{4} + \left(4 a^{2} + 3 a + 10\right)\cdot 17^{5} + \left(6 a^{2} + 8 a + 13\right)\cdot 17^{6} +O\left(17^{ 7 }\right)$
$r_{ 3 }$ $=$ $ 16 + 2\cdot 17 + 9\cdot 17^{2} + 8\cdot 17^{3} + 17^{4} + 14\cdot 17^{6} +O\left(17^{ 7 }\right)$
$r_{ 4 }$ $=$ $ 12 a^{2} + 2 a + 3 + \left(16 a^{2} + 12 a + 2\right)\cdot 17 + \left(8 a^{2} + 16 a + 16\right)\cdot 17^{2} + \left(8 a^{2} + 8 a + 6\right)\cdot 17^{3} + \left(6 a^{2} + 8 a + 3\right)\cdot 17^{4} + \left(14 a^{2} + 15 a + 2\right)\cdot 17^{5} + \left(12 a^{2} + 10 a\right)\cdot 17^{6} +O\left(17^{ 7 }\right)$
$r_{ 5 }$ $=$ $ 7 a^{2} + 11 + \left(16 a^{2} + 11 a + 7\right)\cdot 17 + \left(16 a^{2} + 7 a + 4\right)\cdot 17^{2} + \left(2 a^{2} + 3\right)\cdot 17^{3} + \left(8 a^{2} + a + 10\right)\cdot 17^{4} + \left(13 a^{2} + 12 a + 1\right)\cdot 17^{5} + \left(8 a^{2} + 14 a + 3\right)\cdot 17^{6} +O\left(17^{ 7 }\right)$
$r_{ 6 }$ $=$ $ 5 a^{2} + 13 a + 3 + \left(13 a^{2} + 4 a + 11\right)\cdot 17 + \left(10 a^{2} + 8 a + 16\right)\cdot 17^{2} + \left(4 a^{2} + 6 a + 15\right)\cdot 17^{3} + \left(a^{2} + 7 a + 6\right)\cdot 17^{4} + \left(16 a^{2} + 6 a + 12\right)\cdot 17^{5} + \left(12 a^{2} + 8 a + 6\right)\cdot 17^{6} +O\left(17^{ 7 }\right)$
$r_{ 7 }$ $=$ $ 2 a^{2} + 16 a + 1 + \left(8 a^{2} + 13 a + 2\right)\cdot 17 + \left(8 a^{2} + 4 a + 15\right)\cdot 17^{2} + \left(16 a^{2} + 7 a + 6\right)\cdot 17^{3} + \left(5 a^{2} + a + 4\right)\cdot 17^{4} + \left(13 a^{2} + 7 a + 16\right)\cdot 17^{5} + \left(14 a^{2} + 7\right)\cdot 17^{6} +O\left(17^{ 7 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 7 }$

Cycle notation
$(1,7)(5,6)$
$(1,3,4,5)(2,7)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 7 }$ Character value
$1$$1$$()$$3$
$21$$2$$(1,7)(5,6)$$-1$
$56$$3$$(1,7,4)(3,5,6)$$0$
$42$$4$$(1,2)(3,4,6,7)$$1$
$24$$7$$(1,2,7,3,4,5,6)$$-\zeta_{7}^{4} - \zeta_{7}^{2} - \zeta_{7} - 1$
$24$$7$$(1,3,6,7,5,2,4)$$\zeta_{7}^{4} + \zeta_{7}^{2} + \zeta_{7}$
The blue line marks the conjugacy class containing complex conjugation.