Properties

Label 3.3e4_5e2_11e2.12t33.2c1
Dimension 3
Group $A_5$
Conductor $ 3^{4} \cdot 5^{2} \cdot 11^{2}$
Root number 1
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$3$
Group:$A_5$
Conductor:$245025= 3^{4} \cdot 5^{2} \cdot 11^{2} $
Artin number field: Splitting field of $f= x^{5} - 3 x^{3} - 4 x^{2} + 6 x + 3 $ over $\Q$
Size of Galois orbit: 2
Smallest containing permutation representation: $A_5$
Parity: Even
Determinant: 1.1.1t1.1c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in $\Q_{ 131 }$ to precision 5.
Roots:
$r_{ 1 }$ $=$ $ 20 + 103\cdot 131 + 80\cdot 131^{2} + 69\cdot 131^{3} + 64\cdot 131^{4} +O\left(131^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 31 + 94\cdot 131 + 7\cdot 131^{2} + 46\cdot 131^{3} + 44\cdot 131^{4} +O\left(131^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 99 + 106\cdot 131 + 69\cdot 131^{2} + 68\cdot 131^{3} + 131^{4} +O\left(131^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 116 + 37\cdot 131 + 33\cdot 131^{2} + 24\cdot 131^{3} + 43\cdot 131^{4} +O\left(131^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 127 + 50\cdot 131 + 70\cdot 131^{2} + 53\cdot 131^{3} + 108\cdot 131^{4} +O\left(131^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 5 }$

Cycle notation
$(1,2,3)$
$(3,4,5)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 5 }$ Character value
$1$$1$$()$$3$
$15$$2$$(1,2)(3,4)$$-1$
$20$$3$$(1,2,3)$$0$
$12$$5$$(1,2,3,4,5)$$-\zeta_{5}^{3} - \zeta_{5}^{2}$
$12$$5$$(1,3,4,5,2)$$\zeta_{5}^{3} + \zeta_{5}^{2} + 1$
The blue line marks the conjugacy class containing complex conjugation.