Properties

Label 3.3e4_31e2.12t33.1c2
Dimension 3
Group $A_5$
Conductor $ 3^{4} \cdot 31^{2}$
Root number 1
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$3$
Group:$A_5$
Conductor:$77841= 3^{4} \cdot 31^{2} $
Artin number field: Splitting field of $f= x^{5} - x^{4} + 19 x^{3} - 41 x^{2} + 32 x - 5 $ over $\Q$
Size of Galois orbit: 2
Smallest containing permutation representation: $A_5$
Parity: Even
Determinant: 1.1.1t1.1c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in $\Q_{ 389 }$ to precision 5.
Roots:
$r_{ 1 }$ $=$ $ 37 + 102\cdot 389 + 312\cdot 389^{2} + 343\cdot 389^{3} + 14\cdot 389^{4} +O\left(389^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 45 + 385\cdot 389 + 204\cdot 389^{2} + 157\cdot 389^{3} + 111\cdot 389^{4} +O\left(389^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 72 + 135\cdot 389 + 59\cdot 389^{2} + 47\cdot 389^{3} + 249\cdot 389^{4} +O\left(389^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 86 + 332\cdot 389 + 226\cdot 389^{2} + 362\cdot 389^{3} + 331\cdot 389^{4} +O\left(389^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 150 + 212\cdot 389 + 363\cdot 389^{2} + 255\cdot 389^{3} + 70\cdot 389^{4} +O\left(389^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 5 }$

Cycle notation
$(1,2,3)$
$(3,4,5)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 5 }$ Character value
$1$$1$$()$$3$
$15$$2$$(1,2)(3,4)$$-1$
$20$$3$$(1,2,3)$$0$
$12$$5$$(1,2,3,4,5)$$\zeta_{5}^{3} + \zeta_{5}^{2} + 1$
$12$$5$$(1,3,4,5,2)$$-\zeta_{5}^{3} - \zeta_{5}^{2}$
The blue line marks the conjugacy class containing complex conjugation.