Properties

Label 3.3e4_19e2.4t4.1c1
Dimension 3
Group $A_4$
Conductor $ 3^{4} \cdot 19^{2}$
Root number 1
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$3$
Group:$A_4$
Conductor:$29241= 3^{4} \cdot 19^{2} $
Artin number field: Splitting field of $f= x^{4} - x^{3} + 3 x^{2} + x + 20 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $A_4$
Parity: Even
Determinant: 1.1.1t1.1c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in $\Q_{ 109 }$ to precision 5.
Roots:
$r_{ 1 }$ $=$ $ 9 + 54\cdot 109 + 74\cdot 109^{2} + 48\cdot 109^{3} + 50\cdot 109^{4} +O\left(109^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 15 + 8\cdot 109 + 51\cdot 109^{2} + 45\cdot 109^{3} + 45\cdot 109^{4} +O\left(109^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 32 + 15\cdot 109 + 82\cdot 109^{2} + 48\cdot 109^{3} + 58\cdot 109^{4} +O\left(109^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 54 + 31\cdot 109 + 10\cdot 109^{2} + 75\cdot 109^{3} + 63\cdot 109^{4} +O\left(109^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 4 }$

Cycle notation
$(1,2,3)$
$(1,2)(3,4)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 4 }$ Character value
$1$$1$$()$$3$
$3$$2$$(1,2)(3,4)$$-1$
$4$$3$$(1,2,3)$$0$
$4$$3$$(1,3,2)$$0$
The blue line marks the conjugacy class containing complex conjugation.