Properties

Label 3.3e3_59.4t5.1c1
Dimension 3
Group $S_4$
Conductor $ 3^{3} \cdot 59 $
Root number 1
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$3$
Group:$S_4$
Conductor:$1593= 3^{3} \cdot 59 $
Artin number field: Splitting field of $f= x^{4} - 2 x^{3} + 3 x^{2} - x + 2 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $S_4$
Parity: Even
Determinant: 1.3_59.2t1.1c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in $\Q_{ 149 }$ to precision 5.
Roots:
$r_{ 1 }$ $=$ $ 5 + 11\cdot 149 + 90\cdot 149^{2} + 23\cdot 149^{3} + 41\cdot 149^{4} +O\left(149^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 32 + 96\cdot 149 + 102\cdot 149^{2} + 23\cdot 149^{3} + 49\cdot 149^{4} +O\left(149^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 52 + 115\cdot 149 + 21\cdot 149^{2} + 92\cdot 149^{3} + 14\cdot 149^{4} +O\left(149^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 62 + 75\cdot 149 + 83\cdot 149^{2} + 9\cdot 149^{3} + 44\cdot 149^{4} +O\left(149^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 4 }$

Cycle notation
$(1,2,3,4)$
$(1,2)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 4 }$ Character value
$1$$1$$()$$3$
$3$$2$$(1,2)(3,4)$$-1$
$6$$2$$(1,2)$$1$
$8$$3$$(1,2,3)$$0$
$6$$4$$(1,2,3,4)$$-1$
The blue line marks the conjugacy class containing complex conjugation.