Properties

Label 3.3e3_41.4t5.1c1
Dimension 3
Group $S_4$
Conductor $ 3^{3} \cdot 41 $
Root number 1
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$3$
Group:$S_4$
Conductor:$1107= 3^{3} \cdot 41 $
Artin number field: Splitting field of $f=x^{4} - x^{3} - 2 x - 1$ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $S_4$
Parity: Odd
Determinant: 1.3_41.2t1.1c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in $\Q_{ 317 }$ to precision 5.
Roots: \[ \begin{aligned} r_{ 1 } &= -425124791006 +O\left(317^{ 5 }\right) \\ r_{ 2 } &= 1121693782673 +O\left(317^{ 5 }\right) \\ r_{ 3 } &= 1043033264540 +O\left(317^{ 5 }\right) \\ r_{ 4 } &= 1461476145151 +O\left(317^{ 5 }\right) \\ \end{aligned}\]

Generators of the action on the roots $r_1, \ldots, r_{ 4 }$

Cycle notation
$(1,2,3,4)$
$(1,2)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 4 }$ Character value
$1$$1$$()$$3$
$3$$2$$(1,2)(3,4)$$-1$
$6$$2$$(1,2)$$1$
$8$$3$$(1,2,3)$$0$
$6$$4$$(1,2,3,4)$$-1$
The blue line marks the conjugacy class containing complex conjugation.