Properties

Label 3.331.4t5.1c1
Dimension 3
Group $S_4$
Conductor $ 331 $
Root number 1
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$3$
Group:$S_4$
Conductor:$331 $
Artin number field: Splitting field of $f= x^{4} - x^{3} + x^{2} + x - 1 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $S_4$
Parity: Odd
Determinant: 1.331.2t1.1c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in $\Q_{ 113 }$ to precision 5.
Roots:
$r_{ 1 }$ $=$ $ 40 + 35\cdot 113 + 41\cdot 113^{2} + 79\cdot 113^{3} + 67\cdot 113^{4} +O\left(113^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 94 + 58\cdot 113 + 20\cdot 113^{2} + 65\cdot 113^{3} + 55\cdot 113^{4} +O\left(113^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 96 + 64\cdot 113 + 113^{2} + 99\cdot 113^{3} + 91\cdot 113^{4} +O\left(113^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 110 + 66\cdot 113 + 49\cdot 113^{2} + 95\cdot 113^{3} + 10\cdot 113^{4} +O\left(113^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 4 }$

Cycle notation
$(1,2,3,4)$
$(1,2)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 4 }$ Character value
$1$$1$$()$$3$
$3$$2$$(1,2)(3,4)$$-1$
$6$$2$$(1,2)$$1$
$8$$3$$(1,2,3)$$0$
$6$$4$$(1,2,3,4)$$-1$
The blue line marks the conjugacy class containing complex conjugation.