Properties

Label 3.1147.6t11.b.a
Dimension $3$
Group $S_4\times C_2$
Conductor $1147$
Root number $1$
Indicator $1$

Related objects

Downloads

Learn more

Basic invariants

Dimension: $3$
Group: $S_4\times C_2$
Conductor: \(1147\)\(\medspace = 31 \cdot 37 \)
Frobenius-Schur indicator: $1$
Root number: $1$
Artin stem field: Galois closure of 6.2.35557.1
Galois orbit size: $1$
Smallest permutation container: $S_4\times C_2$
Parity: odd
Determinant: 1.1147.2t1.a.a
Projective image: $S_4$
Projective stem field: Galois closure of 4.2.42439.1

Defining polynomial

$f(x)$$=$ \( x^{6} - 2x^{4} - x^{3} + 2x^{2} - 1 \) Copy content Toggle raw display .

The roots of $f$ are computed in an extension of $\Q_{ 53 }$ to precision 6.

Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 53 }$: \( x^{2} + 49x + 2 \) Copy content Toggle raw display

Roots:
$r_{ 1 }$ $=$ \( 33 a + 45 + \left(14 a + 43\right)\cdot 53 + \left(32 a + 5\right)\cdot 53^{2} + \left(47 a + 37\right)\cdot 53^{3} + 18 a\cdot 53^{4} + \left(33 a + 6\right)\cdot 53^{5} +O(53^{6})\) Copy content Toggle raw display
$r_{ 2 }$ $=$ \( 4 + 42\cdot 53 + 7\cdot 53^{2} + 27\cdot 53^{3} + 26\cdot 53^{4} + 12\cdot 53^{5} +O(53^{6})\) Copy content Toggle raw display
$r_{ 3 }$ $=$ \( 13 + 9\cdot 53 + 39\cdot 53^{2} + 14\cdot 53^{3} + 27\cdot 53^{4} + 26\cdot 53^{5} +O(53^{6})\) Copy content Toggle raw display
$r_{ 4 }$ $=$ \( 52 a + 15 + \left(8 a + 5\right)\cdot 53 + \left(9 a + 32\right)\cdot 53^{2} + \left(8 a + 36\right)\cdot 53^{3} + \left(18 a + 5\right)\cdot 53^{4} + \left(44 a + 23\right)\cdot 53^{5} +O(53^{6})\) Copy content Toggle raw display
$r_{ 5 }$ $=$ \( a + 11 + \left(44 a + 42\right)\cdot 53 + \left(43 a + 6\right)\cdot 53^{2} + \left(44 a + 7\right)\cdot 53^{3} + \left(34 a + 17\right)\cdot 53^{4} + \left(8 a + 23\right)\cdot 53^{5} +O(53^{6})\) Copy content Toggle raw display
$r_{ 6 }$ $=$ \( 20 a + 18 + \left(38 a + 16\right)\cdot 53 + \left(20 a + 14\right)\cdot 53^{2} + \left(5 a + 36\right)\cdot 53^{3} + \left(34 a + 28\right)\cdot 53^{4} + \left(19 a + 14\right)\cdot 53^{5} +O(53^{6})\) Copy content Toggle raw display

Generators of the action on the roots $r_1, \ldots, r_{ 6 }$

Cycle notation
$(2,5)(3,6)$
$(1,5,2)(3,4,6)$
$(5,6)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 6 }$ Character value
$1$$1$$()$$3$
$1$$2$$(1,4)(2,3)(5,6)$$-3$
$3$$2$$(1,4)$$1$
$3$$2$$(1,4)(5,6)$$-1$
$6$$2$$(2,5)(3,6)$$1$
$6$$2$$(1,4)(2,5)(3,6)$$-1$
$8$$3$$(1,5,2)(3,4,6)$$0$
$6$$4$$(1,6,4,5)$$1$
$6$$4$$(1,6,4,5)(2,3)$$-1$
$8$$6$$(1,6,3,4,5,2)$$0$

The blue line marks the conjugacy class containing complex conjugation.