Properties

Label 3.2e6_43e2.12t33.1c1
Dimension 3
Group $A_5$
Conductor $ 2^{6} \cdot 43^{2}$
Root number 1
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$3$
Group:$A_5$
Conductor:$118336= 2^{6} \cdot 43^{2} $
Artin number field: Splitting field of $f= x^{5} - 2 x^{4} + 6 x^{3} - 8 x^{2} + 10 x - 8 $ over $\Q$
Size of Galois orbit: 2
Smallest containing permutation representation: $A_5$
Parity: Even
Determinant: 1.1.1t1.1c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 19 }$ to precision 5.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 19 }$: $ x^{2} + 18 x + 2 $
Roots:
$r_{ 1 }$ $=$ $ 5 a + 2 + \left(3 a + 10\right)\cdot 19 + \left(9 a + 6\right)\cdot 19^{2} + \left(16 a + 8\right)\cdot 19^{3} + 5\cdot 19^{4} +O\left(19^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 8 + 9\cdot 19 + 19^{2} + 2\cdot 19^{3} + 6\cdot 19^{4} +O\left(19^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 14 a + 7 + \left(15 a + 8\right)\cdot 19 + \left(9 a + 12\right)\cdot 19^{2} + \left(2 a + 15\right)\cdot 19^{3} + \left(18 a + 8\right)\cdot 19^{4} +O\left(19^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 17 a + 3 + \left(15 a + 15\right)\cdot 19 + \left(18 a + 16\right)\cdot 19^{2} + \left(17 a + 15\right)\cdot 19^{3} + \left(16 a + 18\right)\cdot 19^{4} +O\left(19^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 2 a + 1 + \left(3 a + 14\right)\cdot 19 + \left(a + 15\right)\cdot 19^{3} + \left(2 a + 17\right)\cdot 19^{4} +O\left(19^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 5 }$

Cycle notation
$(1,2,3)$
$(3,4,5)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 5 }$ Character value
$1$$1$$()$$3$
$15$$2$$(1,2)(3,4)$$-1$
$20$$3$$(1,2,3)$$0$
$12$$5$$(1,2,3,4,5)$$-\zeta_{5}^{3} - \zeta_{5}^{2}$
$12$$5$$(1,3,4,5,2)$$\zeta_{5}^{3} + \zeta_{5}^{2} + 1$
The blue line marks the conjugacy class containing complex conjugation.