Properties

Label 3.2e6_383e2.42t37.1c2
Dimension 3
Group $\GL(3,2)$
Conductor $ 2^{6} \cdot 383^{2}$
Root number not computed
Frobenius-Schur indicator 0

Related objects

Learn more about

Basic invariants

Dimension:$3$
Group:$\GL(3,2)$
Conductor:$9388096= 2^{6} \cdot 383^{2} $
Artin number field: Splitting field of $f= x^{7} - x^{6} + 2 x^{5} + 2 x^{4} - 5 x^{3} + 7 x^{2} - 5 x + 1 $ over $\Q$
Size of Galois orbit: 2
Smallest containing permutation representation: $\PSL(2,7)$
Parity: Even
Determinant: 1.1.1t1.1c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 17 }$ to precision 5.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 17 }$: $ x^{3} + x + 14 $
Roots:
$r_{ 1 }$ $=$ $ 9 a^{2} + 13 a + 3 + \left(2 a^{2} + 11 a + 1\right)\cdot 17 + \left(10 a^{2} + 3 a + 8\right)\cdot 17^{2} + \left(3 a^{2} + 9 a + 10\right)\cdot 17^{3} + \left(2 a^{2} + 9 a + 14\right)\cdot 17^{4} +O\left(17^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 13 a^{2} + 10 a + \left(13 a^{2} + 4 a + 3\right)\cdot 17 + \left(16 a^{2} + 14 a + 1\right)\cdot 17^{2} + \left(16 a^{2} + 9 a + 8\right)\cdot 17^{3} + \left(5 a^{2} + 11\right)\cdot 17^{4} +O\left(17^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 12 a^{2} + 11 a + 5 + 11\cdot 17 + \left(7 a^{2} + 16 a + 11\right)\cdot 17^{2} + \left(13 a^{2} + 14 a + 5\right)\cdot 17^{3} + \left(8 a^{2} + 6 a + 13\right)\cdot 17^{4} +O\left(17^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 2 a^{2} + 11 a + \left(a^{2} + 6 a + 8\right)\cdot 17 + \left(7 a^{2} + 13 a + 3\right)\cdot 17^{2} + \left(3 a + 9\right)\cdot 17^{3} + \left(11 a^{2} + 5 a + 14\right)\cdot 17^{4} +O\left(17^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 8 a^{2} + 12 a + 4 + \left(8 a^{2} + 8 a + 7\right)\cdot 17 + \left(a^{2} + 10 a + 5\right)\cdot 17^{2} + \left(7 a^{2} + 6 a + 2\right)\cdot 17^{3} + \left(13 a^{2} + 7 a + 16\right)\cdot 17^{4} +O\left(17^{ 5 }\right)$
$r_{ 6 }$ $=$ $ 14 + 13\cdot 17 + 16\cdot 17^{2} + 16\cdot 17^{3} + 6\cdot 17^{4} +O\left(17^{ 5 }\right)$
$r_{ 7 }$ $=$ $ 7 a^{2} + 11 a + 9 + \left(7 a^{2} + a + 6\right)\cdot 17 + \left(8 a^{2} + 10 a + 4\right)\cdot 17^{2} + \left(9 a^{2} + 6 a + 15\right)\cdot 17^{3} + \left(9 a^{2} + 4 a + 7\right)\cdot 17^{4} +O\left(17^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 7 }$

Cycle notation
$(2,4,3,7)(5,6)$
$(1,7)(2,6)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 7 }$ Character value
$1$$1$$()$$3$
$21$$2$$(1,7)(2,6)$$-1$
$56$$3$$(1,4,7)(2,6,3)$$0$
$42$$4$$(1,6,4,3)(2,5)$$1$
$24$$7$$(1,2,5,6,4,3,7)$$-\zeta_{7}^{4} - \zeta_{7}^{2} - \zeta_{7} - 1$
$24$$7$$(1,6,7,5,3,2,4)$$\zeta_{7}^{4} + \zeta_{7}^{2} + \zeta_{7}$
The blue line marks the conjugacy class containing complex conjugation.