Properties

Label 3.2e6_29e2.12t33.2c1
Dimension 3
Group $A_5$
Conductor $ 2^{6} \cdot 29^{2}$
Root number 1
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$3$
Group:$A_5$
Conductor:$53824= 2^{6} \cdot 29^{2} $
Artin number field: Splitting field of $f= x^{5} - 2 x^{3} - 2 x^{2} + 3 x + 2 $ over $\Q$
Size of Galois orbit: 2
Smallest containing permutation representation: $A_5$
Parity: Even
Determinant: 1.1.1t1.1c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in $\Q_{ 179 }$ to precision 5.
Roots:
$r_{ 1 }$ $=$ $ 14 + 89\cdot 179 + 131\cdot 179^{2} + 60\cdot 179^{3} + 140\cdot 179^{4} +O\left(179^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 79 + 139\cdot 179 + 86\cdot 179^{2} + 125\cdot 179^{3} + 43\cdot 179^{4} +O\left(179^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 133 + 70\cdot 179 + 96\cdot 179^{2} + 66\cdot 179^{3} + 99\cdot 179^{4} +O\left(179^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 153 + 81\cdot 179 + 77\cdot 179^{2} + 69\cdot 179^{3} + 155\cdot 179^{4} +O\left(179^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 158 + 155\cdot 179 + 144\cdot 179^{2} + 35\cdot 179^{3} + 98\cdot 179^{4} +O\left(179^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 5 }$

Cycle notation
$(1,2,3)$
$(3,4,5)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 5 }$ Character value
$1$$1$$()$$3$
$15$$2$$(1,2)(3,4)$$-1$
$20$$3$$(1,2,3)$$0$
$12$$5$$(1,2,3,4,5)$$-\zeta_{5}^{3} - \zeta_{5}^{2}$
$12$$5$$(1,3,4,5,2)$$\zeta_{5}^{3} + \zeta_{5}^{2} + 1$
The blue line marks the conjugacy class containing complex conjugation.