Properties

 Label 3.14047504.42t37.a.b Dimension 3 Group $\GL(3,2)$ Conductor $2^{4} \cdot 937^{2}$ Root number not computed Frobenius-Schur indicator 0

Related objects

Basic invariants

 Dimension: $3$ Group: $\GL(3,2)$ Conductor: $14047504= 2^{4} \cdot 937^{2}$ Artin number field: Splitting field of 7.3.56190016.1 defined by $f= x^{7} - x^{6} + 3 x^{5} - 5 x^{4} + 5 x^{3} + 7 x^{2} - x - 1$ over $\Q$ Size of Galois orbit: 2 Smallest containing permutation representation: $\PSL(2,7)$ Parity: Even Determinant: 1.1.1t1.a.a Projective image: $\PSL(2,7)$ Projective field: Galois closure of 7.3.56190016.1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 13 }$ to precision 7.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 13 }$: $x^{3} + 2 x + 11$
Roots:
 $r_{ 1 }$ $=$ $10 a^{2} + 6 a + 12 + \left(6 a^{2} + 4 a + 9\right)\cdot 13 + \left(7 a^{2} + 8 a + 4\right)\cdot 13^{2} + \left(9 a^{2} + a\right)\cdot 13^{3} + \left(7 a^{2} + 4 a + 9\right)\cdot 13^{4} + \left(6 a^{2} + 12\right)\cdot 13^{5} + \left(7 a^{2} + 11 a + 10\right)\cdot 13^{6} +O\left(13^{ 7 }\right)$ $r_{ 2 }$ $=$ $12 a^{2} + 6 a + 8 + \left(5 a + 9\right)\cdot 13 + \left(3 a^{2} + 8 a + 4\right)\cdot 13^{2} + \left(6 a^{2} + 4\right)\cdot 13^{3} + \left(7 a^{2} + a + 6\right)\cdot 13^{4} + \left(6 a^{2} + 11 a + 10\right)\cdot 13^{5} + \left(4 a^{2} + 2 a + 12\right)\cdot 13^{6} +O\left(13^{ 7 }\right)$ $r_{ 3 }$ $=$ $3 + 11\cdot 13 + 10\cdot 13^{3} + 13^{4} + 9\cdot 13^{5} + 2\cdot 13^{6} +O\left(13^{ 7 }\right)$ $r_{ 4 }$ $=$ $12 a^{2} + 4 a + 8 + \left(3 a^{2} + 2 a\right)\cdot 13 + \left(7 a^{2} + 6\right)\cdot 13^{2} + \left(8 a^{2} + 8 a + 7\right)\cdot 13^{3} + \left(5 a^{2} + 10 a + 12\right)\cdot 13^{4} + \left(7 a^{2} + 2 a + 2\right)\cdot 13^{5} + \left(11 a^{2} + 3 a + 9\right)\cdot 13^{6} +O\left(13^{ 7 }\right)$ $r_{ 5 }$ $=$ $a^{2} + a + \left(4 a^{2} + 12 a + 2\right)\cdot 13 + \left(8 a^{2} + 6 a + 10\right)\cdot 13^{2} + \left(8 a^{2} + 10 a + 7\right)\cdot 13^{3} + \left(2 a^{2} + 9 a + 6\right)\cdot 13^{4} + \left(3 a^{2} + 9 a + 12\right)\cdot 13^{5} + \left(2 a^{2} + 6 a + 3\right)\cdot 13^{6} +O\left(13^{ 7 }\right)$ $r_{ 6 }$ $=$ $2 a^{2} + 3 a + 12 + \left(8 a^{2} + 5 a + 1\right)\cdot 13 + \left(2 a^{2} + 4 a + 4\right)\cdot 13^{2} + \left(11 a^{2} + 4 a + 2\right)\cdot 13^{3} + \left(12 a^{2} + a + 9\right)\cdot 13^{4} + \left(11 a^{2} + 12 a + 4\right)\cdot 13^{5} + \left(9 a^{2} + 6 a + 11\right)\cdot 13^{6} +O\left(13^{ 7 }\right)$ $r_{ 7 }$ $=$ $2 a^{2} + 6 a + 10 + \left(2 a^{2} + 9 a + 3\right)\cdot 13 + \left(10 a^{2} + 10 a + 8\right)\cdot 13^{2} + \left(7 a^{2} + 6\right)\cdot 13^{3} + \left(2 a^{2} + 12 a + 6\right)\cdot 13^{4} + \left(3 a^{2} + 2 a + 12\right)\cdot 13^{5} + \left(3 a^{2} + 8 a\right)\cdot 13^{6} +O\left(13^{ 7 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 7 }$

 Cycle notation $(1,4,6,3)(2,5)$ $(1,2)(4,7)$

Character values on conjugacy classes

 Size Order Action on $r_1, \ldots, r_{ 7 }$ Character value $1$ $1$ $()$ $3$ $21$ $2$ $(1,2)(4,7)$ $-1$ $56$ $3$ $(1,6,7)(3,4,5)$ $0$ $42$ $4$ $(1,4,6,3)(2,5)$ $1$ $24$ $7$ $(1,5,2,4,7,6,3)$ $-\zeta_{7}^{4} - \zeta_{7}^{2} - \zeta_{7} - 1$ $24$ $7$ $(1,4,3,2,6,5,7)$ $\zeta_{7}^{4} + \zeta_{7}^{2} + \zeta_{7}$
The blue line marks the conjugacy class containing complex conjugation.