Properties

Label 3.2e4_79.4t5.1c1
Dimension 3
Group $S_4$
Conductor $ 2^{4} \cdot 79 $
Root number 1
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$3$
Group:$S_4$
Conductor:$1264= 2^{4} \cdot 79 $
Artin number field: Splitting field of $f= x^{4} + 3 x^{2} - 2 x + 1 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $S_4$
Parity: Even
Determinant: 1.2e2_79.2t1.1c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in $\Q_{ 307 }$ to precision 5.
Roots:
$r_{ 1 }$ $=$ $ 49 + 112\cdot 307 + 243\cdot 307^{2} + 73\cdot 307^{3} + 7\cdot 307^{4} +O\left(307^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 53 + 155\cdot 307 + 297\cdot 307^{2} + 221\cdot 307^{3} + 73\cdot 307^{4} +O\left(307^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 87 + 171\cdot 307 + 221\cdot 307^{2} + 125\cdot 307^{3} + 119\cdot 307^{4} +O\left(307^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 118 + 175\cdot 307 + 158\cdot 307^{2} + 192\cdot 307^{3} + 106\cdot 307^{4} +O\left(307^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 4 }$

Cycle notation
$(1,2,3,4)$
$(1,2)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 4 }$ Character value
$1$$1$$()$$3$
$3$$2$$(1,2)(3,4)$$-1$
$6$$2$$(1,2)$$1$
$8$$3$$(1,2,3)$$0$
$6$$4$$(1,2,3,4)$$-1$
The blue line marks the conjugacy class containing complex conjugation.