Properties

Label 3.2e4_1049e2.42t37.1c1
Dimension 3
Group $\GL(3,2)$
Conductor $ 2^{4} \cdot 1049^{2}$
Root number not computed
Frobenius-Schur indicator 0

Related objects

Learn more about

Basic invariants

Dimension:$3$
Group:$\GL(3,2)$
Conductor:$17606416= 2^{4} \cdot 1049^{2} $
Artin number field: Splitting field of $f= x^{7} - 3 x^{6} + x^{5} + 3 x^{4} - 4 x^{3} + 4 x^{2} - 4 $ over $\Q$
Size of Galois orbit: 2
Smallest containing permutation representation: $\PSL(2,7)$
Parity: Even
Determinant: 1.1.1t1.1c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 19 }$ to precision 6.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 19 }$: $ x^{3} + 4 x + 17 $
Roots:
$r_{ 1 }$ $=$ $ 12 a^{2} + 7 a + 9 + \left(4 a^{2} + 16 a + 7\right)\cdot 19 + \left(a + 13\right)\cdot 19^{2} + \left(5 a^{2} + 15 a + 7\right)\cdot 19^{3} + \left(6 a^{2} + 10 a + 17\right)\cdot 19^{4} + \left(3 a^{2} + 4 a + 17\right)\cdot 19^{5} +O\left(19^{ 6 }\right)$
$r_{ 2 }$ $=$ $ 13 + 15\cdot 19^{2} + 5\cdot 19^{3} + 10\cdot 19^{4} + 18\cdot 19^{5} +O\left(19^{ 6 }\right)$
$r_{ 3 }$ $=$ $ 16 a^{2} + 16 a + 18 + \left(7 a^{2} + 4 a + 12\right)\cdot 19 + \left(4 a^{2} + 17 a + 6\right)\cdot 19^{2} + \left(5 a^{2} + 11 a + 11\right)\cdot 19^{3} + \left(a^{2} + 3 a + 5\right)\cdot 19^{4} + \left(11 a^{2} + 11 a + 14\right)\cdot 19^{5} +O\left(19^{ 6 }\right)$
$r_{ 4 }$ $=$ $ 4 a + 15 + \left(5 a^{2} + 9 a + 14\right)\cdot 19 + \left(16 a^{2} + 7 a + 11\right)\cdot 19^{2} + \left(9 a^{2} + 11 a + 1\right)\cdot 19^{3} + \left(4 a^{2} + 15 a\right)\cdot 19^{4} + \left(16 a^{2} + 8\right)\cdot 19^{5} +O\left(19^{ 6 }\right)$
$r_{ 5 }$ $=$ $ 18 a^{2} + 6 a + 17 + \left(18 a^{2} + a + 10\right)\cdot 19 + \left(13 a^{2} + 9 a\right)\cdot 19^{2} + \left(7 a^{2} + 4 a + 18\right)\cdot 19^{3} + \left(a^{2} + 9 a + 5\right)\cdot 19^{4} + \left(a^{2} + 17 a\right)\cdot 19^{5} +O\left(19^{ 6 }\right)$
$r_{ 6 }$ $=$ $ 7 a^{2} + 8 a + 2 + \left(9 a^{2} + 12 a + 1\right)\cdot 19 + \left(2 a^{2} + 9 a + 13\right)\cdot 19^{2} + \left(4 a^{2} + 11 a + 11\right)\cdot 19^{3} + \left(8 a^{2} + 11 a + 3\right)\cdot 19^{4} + \left(18 a^{2} + 13 a + 1\right)\cdot 19^{5} +O\left(19^{ 6 }\right)$
$r_{ 7 }$ $=$ $ 4 a^{2} + 16 a + 5 + \left(11 a^{2} + 12 a + 9\right)\cdot 19 + \left(11 a + 15\right)\cdot 19^{2} + \left(6 a^{2} + 2 a\right)\cdot 19^{3} + \left(16 a^{2} + 6 a + 14\right)\cdot 19^{4} + \left(6 a^{2} + 9 a + 15\right)\cdot 19^{5} +O\left(19^{ 6 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 7 }$

Cycle notation
$(2,7)(3,5,6,4)$
$(1,5)(6,7)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 7 }$ Character value
$1$$1$$()$$3$
$21$$2$$(1,5)(6,7)$$-1$
$56$$3$$(1,4,5)(3,6,7)$$0$
$42$$4$$(1,7,4,3)(2,6)$$1$
$24$$7$$(1,6,2,7,4,3,5)$$\zeta_{7}^{4} + \zeta_{7}^{2} + \zeta_{7}$
$24$$7$$(1,7,5,2,3,6,4)$$-\zeta_{7}^{4} - \zeta_{7}^{2} - \zeta_{7} - 1$
The blue line marks the conjugacy class containing complex conjugation.