Properties

Label 3.2e2_3e4_11e2.12t33.1
Dimension 3
Group $A_5$
Conductor $ 2^{2} \cdot 3^{4} \cdot 11^{2}$
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$3$
Group:$A_5$
Conductor:$39204= 2^{2} \cdot 3^{4} \cdot 11^{2} $
Artin number field: Splitting field of $f= x^{5} - 2 x^{4} - 5 x^{3} + 13 x^{2} + 4 x + 1 $ over $\Q$
Size of Galois orbit: 2
Smallest containing permutation representation: $A_5$
Parity: Even

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 37 }$ to precision 5.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 37 }$: $ x^{2} + 33 x + 2 $
Roots:
$r_{ 1 }$ $=$ $ 26 a + 2 + \left(22 a + 29\right)\cdot 37 + \left(36 a + 15\right)\cdot 37^{2} + 27\cdot 37^{3} + \left(4 a + 14\right)\cdot 37^{4} +O\left(37^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 31 + 32\cdot 37 + 32\cdot 37^{2} + 24\cdot 37^{3} + 8\cdot 37^{4} +O\left(37^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 11 a + 32 + \left(14 a + 19\right)\cdot 37 + 28\cdot 37^{2} + \left(36 a + 31\right)\cdot 37^{3} + \left(32 a + 29\right)\cdot 37^{4} +O\left(37^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 12 a + \left(6 a + 8\right)\cdot 37 + \left(17 a + 4\right)\cdot 37^{2} + 29 a\cdot 37^{3} + \left(33 a + 13\right)\cdot 37^{4} +O\left(37^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 25 a + 11 + \left(30 a + 21\right)\cdot 37 + \left(19 a + 29\right)\cdot 37^{2} + \left(7 a + 26\right)\cdot 37^{3} + \left(3 a + 7\right)\cdot 37^{4} +O\left(37^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 5 }$

Cycle notation
$(1,2,3)$
$(3,4,5)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 5 }$ Character values
$c1$ $c2$
$1$ $1$ $()$ $3$ $3$
$15$ $2$ $(1,2)(3,4)$ $-1$ $-1$
$20$ $3$ $(1,2,3)$ $0$ $0$
$12$ $5$ $(1,2,3,4,5)$ $-\zeta_{5}^{3} - \zeta_{5}^{2}$ $\zeta_{5}^{3} + \zeta_{5}^{2} + 1$
$12$ $5$ $(1,3,4,5,2)$ $\zeta_{5}^{3} + \zeta_{5}^{2} + 1$ $-\zeta_{5}^{3} - \zeta_{5}^{2}$
The blue line marks the conjugacy class containing complex conjugation.