Properties

Label 3.1823.4t5.1c1
Dimension 3
Group $S_4$
Conductor $ 1823 $
Root number 1
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$3$
Group:$S_4$
Conductor:$1823 $
Artin number field: Splitting field of $f= x^{4} - x^{3} + 3 x - 2 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $S_4$
Parity: Odd
Determinant: 1.1823.2t1.1c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in $\Q_{ 281 }$ to precision 5.
Roots:
$r_{ 1 }$ $=$ $ 55 + 169\cdot 281 + 164\cdot 281^{2} + 161\cdot 281^{3} + 158\cdot 281^{4} +O\left(281^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 107 + 4\cdot 281 + 31\cdot 281^{2} + 169\cdot 281^{3} + 280\cdot 281^{4} +O\left(281^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 147 + 247\cdot 281 + 242\cdot 281^{2} + 201\cdot 281^{3} + 155\cdot 281^{4} +O\left(281^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 254 + 140\cdot 281 + 123\cdot 281^{2} + 29\cdot 281^{3} + 248\cdot 281^{4} +O\left(281^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 4 }$

Cycle notation
$(1,2,3,4)$
$(1,2)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 4 }$ Character value
$1$$1$$()$$3$
$3$$2$$(1,2)(3,4)$$-1$
$6$$2$$(1,2)$$1$
$8$$3$$(1,2,3)$$0$
$6$$4$$(1,2,3,4)$$-1$
The blue line marks the conjugacy class containing complex conjugation.