Properties

Label 3.17_43.4t5.1c1
Dimension 3
Group $S_4$
Conductor $ 17 \cdot 43 $
Root number 1
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$3$
Group:$S_4$
Conductor:$731= 17 \cdot 43 $
Artin number field: Splitting field of $f= x^{4} - x^{3} + 2 x^{2} - 1 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $S_4$
Parity: Odd
Determinant: 1.17_43.2t1.1c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in $\Q_{ 227 }$ to precision 5.
Roots:
$r_{ 1 }$ $=$ $ 12 + 146\cdot 227 + 25\cdot 227^{2} + 203\cdot 227^{3} + 5\cdot 227^{4} +O\left(227^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 57 + 94\cdot 227 + 38\cdot 227^{2} + 211\cdot 227^{3} + 108\cdot 227^{4} +O\left(227^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 175 + 127\cdot 227 + 14\cdot 227^{2} + 216\cdot 227^{3} + 110\cdot 227^{4} +O\left(227^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 211 + 85\cdot 227 + 148\cdot 227^{2} + 50\cdot 227^{3} + 227^{4} +O\left(227^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 4 }$

Cycle notation
$(1,2,3,4)$
$(1,2)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 4 }$ Character value
$1$$1$$()$$3$
$3$$2$$(1,2)(3,4)$$-1$
$6$$2$$(1,2)$$1$
$8$$3$$(1,2,3)$$0$
$6$$4$$(1,2,3,4)$$-1$
The blue line marks the conjugacy class containing complex conjugation.