Properties

Label 3.17_41.4t5.1c1
Dimension 3
Group $S_4$
Conductor $ 17 \cdot 41 $
Root number 1
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$3$
Group:$S_4$
Conductor:$697= 17 \cdot 41 $
Artin number field: Splitting field of $f= x^{4} - x^{3} + 2 x^{2} - x + 2 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $S_4$
Parity: Even
Determinant: 1.17_41.2t1.1c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 11 }$ to precision 5.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 11 }$: $ x^{2} + 7 x + 2 $
Roots:
$r_{ 1 }$ $=$ $ a + 8 + \left(4 a + 6\right)\cdot 11 + 9 a\cdot 11^{2} + \left(6 a + 6\right)\cdot 11^{3} + \left(a + 5\right)\cdot 11^{4} +O\left(11^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 3 a + 1 + 3\cdot 11 + 5 a\cdot 11^{2} + 3\cdot 11^{3} +O\left(11^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 10 a + 1 + 6 a\cdot 11 + \left(a + 1\right)\cdot 11^{2} + \left(4 a + 2\right)\cdot 11^{3} + \left(9 a + 5\right)\cdot 11^{4} +O\left(11^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 8 a + 2 + \left(10 a + 1\right)\cdot 11 + \left(5 a + 9\right)\cdot 11^{2} + \left(10 a + 10\right)\cdot 11^{3} + \left(10 a + 10\right)\cdot 11^{4} +O\left(11^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 4 }$

Cycle notation
$(1,2,3,4)$
$(1,2)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 4 }$ Character value
$1$$1$$()$$3$
$3$$2$$(1,2)(3,4)$$-1$
$6$$2$$(1,2)$$1$
$8$$3$$(1,2,3)$$0$
$6$$4$$(1,2,3,4)$$-1$
The blue line marks the conjugacy class containing complex conjugation.