Properties

Label 2.905.4t3.b.a
Dimension $2$
Group $D_{4}$
Conductor $905$
Root number $1$
Indicator $1$

Related objects

Downloads

Learn more

Basic invariants

Dimension: $2$
Group: $D_{4}$
Conductor: \(905\)\(\medspace = 5 \cdot 181 \)
Frobenius-Schur indicator: $1$
Root number: $1$
Artin stem field: Galois closure of 4.4.4525.1
Galois orbit size: $1$
Smallest permutation container: $D_{4}$
Parity: even
Determinant: 1.905.2t1.a.a
Projective image: $C_2^2$
Projective field: Galois closure of \(\Q(\sqrt{5}, \sqrt{181})\)

Defining polynomial

$f(x)$$=$ \( x^{4} - x^{3} - 7x^{2} + 3x + 9 \) Copy content Toggle raw display .

The roots of $f$ are computed in $\Q_{ 101 }$ to precision 5.

Roots:
$r_{ 1 }$ $=$ \( 4 + 43\cdot 101 + 35\cdot 101^{2} + 37\cdot 101^{3} + 56\cdot 101^{4} +O(101^{5})\) Copy content Toggle raw display
$r_{ 2 }$ $=$ \( 59 + 42\cdot 101 + 50\cdot 101^{2} + 95\cdot 101^{3} + 32\cdot 101^{4} +O(101^{5})\) Copy content Toggle raw display
$r_{ 3 }$ $=$ \( 65 + 13\cdot 101 + 84\cdot 101^{2} + 61\cdot 101^{3} + 22\cdot 101^{4} +O(101^{5})\) Copy content Toggle raw display
$r_{ 4 }$ $=$ \( 75 + 101 + 32\cdot 101^{2} + 7\cdot 101^{3} + 90\cdot 101^{4} +O(101^{5})\) Copy content Toggle raw display

Generators of the action on the roots $r_1, \ldots, r_{ 4 }$

Cycle notation
$(1,2)(3,4)$
$(2,3)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 4 }$ Character value
$1$$1$$()$$2$
$1$$2$$(1,4)(2,3)$$-2$
$2$$2$$(1,2)(3,4)$$0$
$2$$2$$(1,4)$$0$
$2$$4$$(1,3,4,2)$$0$

The blue line marks the conjugacy class containing complex conjugation.