Properties

Label 2.4645.4t3.c.a
Dimension $2$
Group $D_{4}$
Conductor $4645$
Root number $1$
Indicator $1$

Related objects

Learn more about

Basic invariants

Dimension: $2$
Group: $D_{4}$
Conductor: \(4645\)\(\medspace = 5 \cdot 929 \)
Frobenius-Schur indicator: $1$
Root number: $1$
Artin number field: Galois closure of 4.0.4315205.1
Galois orbit size: $1$
Smallest permutation container: $D_{4}$
Parity: even
Determinant: 1.4645.2t1.a.a
Projective image: $C_2^2$
Projective field: Galois closure of \(\Q(\sqrt{5}, \sqrt{929})\)

Defining polynomial

$f(x)$$=$$ x^{4} - 2 x^{3} + 32 x^{2} - 31 x + 8 $.

The roots of $f$ are computed in $\Q_{ 29 }$ to precision 6.

Roots:
$r_{ 1 }$ $=$ $ 7 + 26\cdot 29 + 10\cdot 29^{2} + 22\cdot 29^{3} + 27\cdot 29^{4} + 24\cdot 29^{5} +O\left(29^{ 6 }\right)$
$r_{ 2 }$ $=$ $ 9 + 2\cdot 29 + 13\cdot 29^{2} + 2\cdot 29^{3} + 15\cdot 29^{4} + 4\cdot 29^{5} +O\left(29^{ 6 }\right)$
$r_{ 3 }$ $=$ $ 21 + 26\cdot 29 + 15\cdot 29^{2} + 26\cdot 29^{3} + 13\cdot 29^{4} + 24\cdot 29^{5} +O\left(29^{ 6 }\right)$
$r_{ 4 }$ $=$ $ 23 + 2\cdot 29 + 18\cdot 29^{2} + 6\cdot 29^{3} + 29^{4} + 4\cdot 29^{5} +O\left(29^{ 6 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 4 }$

Cycle notation
$(1,2)(3,4)$
$(2,3)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 4 }$ Character value
$1$$1$$()$$2$
$1$$2$$(1,4)(2,3)$$-2$
$2$$2$$(1,2)(3,4)$$0$
$2$$2$$(1,4)$$0$
$2$$4$$(1,3,4,2)$$0$

The blue line marks the conjugacy class containing complex conjugation.