Properties

Label 2.328.4t3.d.a
Dimension $2$
Group $D_{4}$
Conductor $328$
Root number $1$
Indicator $1$

Related objects

Downloads

Learn more

Basic invariants

Dimension: $2$
Group: $D_{4}$
Conductor: \(328\)\(\medspace = 2^{3} \cdot 41 \)
Frobenius-Schur indicator: $1$
Root number: $1$
Artin stem field: Galois closure of 4.0.2624.1
Galois orbit size: $1$
Smallest permutation container: $D_{4}$
Parity: odd
Determinant: 1.328.2t1.b.a
Projective image: $C_2^2$
Projective field: Galois closure of \(\Q(\sqrt{-2}, \sqrt{41})\)

Defining polynomial

$f(x)$$=$ \( x^{4} - 2x^{3} + 3x^{2} - 2x + 3 \) Copy content Toggle raw display .

The roots of $f$ are computed in $\Q_{ 83 }$ to precision 5.

Roots:
$r_{ 1 }$ $=$ \( 13 + 82\cdot 83 + 9\cdot 83^{2} + 30\cdot 83^{3} + 74\cdot 83^{4} +O(83^{5})\) Copy content Toggle raw display
$r_{ 2 }$ $=$ \( 23 + 76\cdot 83 + 33\cdot 83^{2} + 16\cdot 83^{3} + 44\cdot 83^{4} +O(83^{5})\) Copy content Toggle raw display
$r_{ 3 }$ $=$ \( 61 + 6\cdot 83 + 49\cdot 83^{2} + 66\cdot 83^{3} + 38\cdot 83^{4} +O(83^{5})\) Copy content Toggle raw display
$r_{ 4 }$ $=$ \( 71 + 73\cdot 83^{2} + 52\cdot 83^{3} + 8\cdot 83^{4} +O(83^{5})\) Copy content Toggle raw display

Generators of the action on the roots $r_1, \ldots, r_{ 4 }$

Cycle notation
$(1,4)$
$(1,2)(3,4)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 4 }$ Character value
$1$$1$$()$$2$
$1$$2$$(1,4)(2,3)$$-2$
$2$$2$$(1,2)(3,4)$$0$
$2$$2$$(1,4)$$0$
$2$$4$$(1,3,4,2)$$0$

The blue line marks the conjugacy class containing complex conjugation.