Properties

Label 2.2e7_19.24t22.2c1
Dimension 2
Group $\textrm{GL(2,3)}$
Conductor $ 2^{7} \cdot 19 $
Root number not computed
Frobenius-Schur indicator 0

Related objects

Learn more about

Basic invariants

Dimension:$2$
Group:$\textrm{GL(2,3)}$
Conductor:$2432= 2^{7} \cdot 19 $
Artin number field: Splitting field of $f= x^{8} - 12 x^{4} + 16 x^{2} - 76 $ over $\Q$
Size of Galois orbit: 2
Smallest containing permutation representation: 24T22
Parity: Odd
Determinant: 1.19.2t1.1c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 59 }$ to precision 8.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 59 }$: $ x^{2} + 58 x + 2 $
Roots:
$r_{ 1 }$ $=$ $ 32 + 15\cdot 59 + 54\cdot 59^{2} + 19\cdot 59^{3} + 16\cdot 59^{4} + 12\cdot 59^{5} + 33\cdot 59^{7} +O\left(59^{ 8 }\right)$
$r_{ 2 }$ $=$ $ 50 a + 34 + \left(40 a + 4\right)\cdot 59 + \left(50 a + 54\right)\cdot 59^{2} + \left(28 a + 10\right)\cdot 59^{3} + \left(34 a + 56\right)\cdot 59^{4} + \left(58 a + 46\right)\cdot 59^{5} + \left(44 a + 6\right)\cdot 59^{6} + \left(36 a + 4\right)\cdot 59^{7} +O\left(59^{ 8 }\right)$
$r_{ 3 }$ $=$ $ 9 a + 14 + \left(21 a + 42\right)\cdot 59 + \left(23 a + 1\right)\cdot 59^{2} + \left(10 a + 11\right)\cdot 59^{3} + \left(15 a + 42\right)\cdot 59^{4} + \left(16 a + 1\right)\cdot 59^{5} + \left(14 a + 20\right)\cdot 59^{6} + \left(44 a + 37\right)\cdot 59^{7} +O\left(59^{ 8 }\right)$
$r_{ 4 }$ $=$ $ 9 a + 36 + \left(21 a + 4\right)\cdot 59 + \left(23 a + 55\right)\cdot 59^{2} + \left(10 a + 1\right)\cdot 59^{3} + \left(15 a + 12\right)\cdot 59^{4} + \left(16 a + 56\right)\cdot 59^{5} + \left(14 a + 40\right)\cdot 59^{6} + \left(44 a + 50\right)\cdot 59^{7} +O\left(59^{ 8 }\right)$
$r_{ 5 }$ $=$ $ 27 + 43\cdot 59 + 4\cdot 59^{2} + 39\cdot 59^{3} + 42\cdot 59^{4} + 46\cdot 59^{5} + 58\cdot 59^{6} + 25\cdot 59^{7} +O\left(59^{ 8 }\right)$
$r_{ 6 }$ $=$ $ 9 a + 25 + \left(18 a + 54\right)\cdot 59 + \left(8 a + 4\right)\cdot 59^{2} + \left(30 a + 48\right)\cdot 59^{3} + \left(24 a + 2\right)\cdot 59^{4} + 12\cdot 59^{5} + \left(14 a + 52\right)\cdot 59^{6} + \left(22 a + 54\right)\cdot 59^{7} +O\left(59^{ 8 }\right)$
$r_{ 7 }$ $=$ $ 50 a + 45 + \left(37 a + 16\right)\cdot 59 + \left(35 a + 57\right)\cdot 59^{2} + \left(48 a + 47\right)\cdot 59^{3} + \left(43 a + 16\right)\cdot 59^{4} + \left(42 a + 57\right)\cdot 59^{5} + \left(44 a + 38\right)\cdot 59^{6} + \left(14 a + 21\right)\cdot 59^{7} +O\left(59^{ 8 }\right)$
$r_{ 8 }$ $=$ $ 50 a + 23 + \left(37 a + 54\right)\cdot 59 + \left(35 a + 3\right)\cdot 59^{2} + \left(48 a + 57\right)\cdot 59^{3} + \left(43 a + 46\right)\cdot 59^{4} + \left(42 a + 2\right)\cdot 59^{5} + \left(44 a + 18\right)\cdot 59^{6} + \left(14 a + 8\right)\cdot 59^{7} +O\left(59^{ 8 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 8 }$

Cycle notation
$(1,4,6)(2,5,8)$
$(1,5)(2,4)(6,8)$
$(1,5)(2,6)(3,7)(4,8)$
$(1,7,5,3)(2,4,6,8)$
$(1,4,5,8)(2,3,6,7)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 8 }$ Character value
$1$$1$$()$$2$
$1$$2$$(1,5)(2,6)(3,7)(4,8)$$-2$
$12$$2$$(1,5)(2,4)(6,8)$$0$
$8$$3$$(1,8,3)(4,7,5)$$-1$
$6$$4$$(1,7,5,3)(2,4,6,8)$$0$
$8$$6$$(1,7,8,5,3,4)(2,6)$$1$
$6$$8$$(1,8,7,2,5,4,3,6)$$-\zeta_{8}^{3} - \zeta_{8}$
$6$$8$$(1,4,7,6,5,8,3,2)$$\zeta_{8}^{3} + \zeta_{8}$
The blue line marks the conjugacy class containing complex conjugation.