Properties

Label 2.2e3_41.4t3.2c1
Dimension 2
Group $D_{4}$
Conductor $ 2^{3} \cdot 41 $
Root number 1
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$2$
Group:$D_{4}$
Conductor:$328= 2^{3} \cdot 41 $
Artin number field: Splitting field of $f= x^{4} - 2 x^{3} - 3 x^{2} + 2 x + 1 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $D_{4}$
Parity: Even
Determinant: 1.2e3_41.2t1.1c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in $\Q_{ 73 }$ to precision 5.
Roots:
$r_{ 1 }$ $=$ $ 19 + 37\cdot 73 + 2\cdot 73^{2} + 52\cdot 73^{3} + 35\cdot 73^{4} +O\left(73^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 23 + 73 + 68\cdot 73^{2} + 11\cdot 73^{3} + 8\cdot 73^{4} +O\left(73^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 47 + 44\cdot 73 + 24\cdot 73^{2} + 31\cdot 73^{3} + 40\cdot 73^{4} +O\left(73^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 59 + 62\cdot 73 + 50\cdot 73^{2} + 50\cdot 73^{3} + 61\cdot 73^{4} +O\left(73^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 4 }$

Cycle notation
$(1,3)(2,4)$
$(3,4)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 4 }$ Character value
$1$$1$$()$$2$
$1$$2$$(1,2)(3,4)$$-2$
$2$$2$$(1,3)(2,4)$$0$
$2$$2$$(1,2)$$0$
$2$$4$$(1,4,2,3)$$0$
The blue line marks the conjugacy class containing complex conjugation.