Properties

Label 2.2e3_3_11.4t3.3c1
Dimension 2
Group $D_{4}$
Conductor $ 2^{3} \cdot 3 \cdot 11 $
Root number 1
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$2$
Group:$D_{4}$
Conductor:$264= 2^{3} \cdot 3 \cdot 11 $
Artin number field: Splitting field of $f= x^{4} - 2 x^{3} + x^{2} + 2 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $D_{4}$
Parity: Odd
Determinant: 1.2e3_3_11.2t1.2c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in $\Q_{ 41 }$ to precision 5.
Roots:
$r_{ 1 }$ $=$ $ 6 + 15\cdot 41 + 39\cdot 41^{2} + 33\cdot 41^{3} + 35\cdot 41^{4} +O\left(41^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 20 + 26\cdot 41 + 3\cdot 41^{2} + 22\cdot 41^{3} + 6\cdot 41^{4} +O\left(41^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 22 + 14\cdot 41 + 37\cdot 41^{2} + 18\cdot 41^{3} + 34\cdot 41^{4} +O\left(41^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 36 + 25\cdot 41 + 41^{2} + 7\cdot 41^{3} + 5\cdot 41^{4} +O\left(41^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 4 }$

Cycle notation
$(1,4)$
$(1,2)(3,4)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 4 }$ Character value
$1$$1$$()$$2$
$1$$2$$(1,4)(2,3)$$-2$
$2$$2$$(1,2)(3,4)$$0$
$2$$2$$(1,4)$$0$
$2$$4$$(1,3,4,2)$$0$
The blue line marks the conjugacy class containing complex conjugation.