# Properties

 Label 2.211.3t2.1c1 Dimension 2 Group $S_3$ Conductor $211$ Root number 1 Frobenius-Schur indicator 1

# Related objects

## Basic invariants

 Dimension: $2$ Group: $S_3$ Conductor: $211$ Artin number field: Splitting field of $f= x^{3} - 2 x - 3$ over $\Q$ Size of Galois orbit: 1 Smallest containing permutation representation: $S_3$ Parity: Odd Determinant: 1.211.2t1.1c1

## Galois action

### Roots of defining polynomial

The roots of $f$ are computed in $\Q_{ 53 }$ to precision 5.
Roots: \begin{aligned} r_{ 1 } &= 4 + 38\cdot 53 + 27\cdot 53^{2} + 42\cdot 53^{3} + 36\cdot 53^{4} +O\left(53^{ 5 }\right) \\ r_{ 2 } &= 17 + 32\cdot 53 + 46\cdot 53^{2} + 9\cdot 53^{3} + 15\cdot 53^{4} +O\left(53^{ 5 }\right) \\ r_{ 3 } &= 32 + 35\cdot 53 + 31\cdot 53^{2} + 53^{4} +O\left(53^{ 5 }\right) \\ \end{aligned}

### Generators of the action on the roots $r_{ 1 }, r_{ 2 }, r_{ 3 }$

 Cycle notation $(1,2,3)$ $(1,2)$

### Character values on conjugacy classes

 Size Order Action on $r_{ 1 }, r_{ 2 }, r_{ 3 }$ Character value $1$ $1$ $()$ $2$ $3$ $2$ $(1,2)$ $0$ $2$ $3$ $(1,2,3)$ $-1$
The blue line marks the conjugacy class containing complex conjugation.