Properties

Label 2.2011.7t2.1c3
Dimension 2
Group $D_{7}$
Conductor $ 2011 $
Root number 1
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$2$
Group:$D_{7}$
Conductor:$2011 $
Artin number field: Splitting field of $f= x^{7} - 2 x^{6} + 13 x^{5} - 13 x^{4} - 29 x^{2} - 30 x - 36 $ over $\Q$
Size of Galois orbit: 3
Smallest containing permutation representation: $D_{7}$
Parity: Odd
Determinant: 1.2011.2t1.1c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 11 }$ to precision 5.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 11 }$: $ x^{2} + 7 x + 2 $
Roots:
$r_{ 1 }$ $=$ $ 4 + 6\cdot 11 + 4\cdot 11^{2} + 7\cdot 11^{3} + 7\cdot 11^{4} +O\left(11^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 3 a + 8 + \left(7 a + 5\right)\cdot 11 + \left(9 a + 6\right)\cdot 11^{2} + 8\cdot 11^{3} + \left(5 a + 4\right)\cdot 11^{4} +O\left(11^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 10 a + \left(4 a + 2\right)\cdot 11 + \left(4 a + 2\right)\cdot 11^{2} + 11^{3} + \left(8 a + 4\right)\cdot 11^{4} +O\left(11^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 7 a + 6 + \left(a + 4\right)\cdot 11 + \left(4 a + 3\right)\cdot 11^{2} + \left(10 a + 5\right)\cdot 11^{3} + 3\cdot 11^{4} +O\left(11^{ 5 }\right)$
$r_{ 5 }$ $=$ $ a + 7 + 6 a\cdot 11 + \left(6 a + 4\right)\cdot 11^{2} + \left(10 a + 9\right)\cdot 11^{3} + \left(2 a + 2\right)\cdot 11^{4} +O\left(11^{ 5 }\right)$
$r_{ 6 }$ $=$ $ 8 a + 9 + \left(3 a + 9\right)\cdot 11 + \left(a + 4\right)\cdot 11^{2} + \left(10 a + 2\right)\cdot 11^{3} + \left(5 a + 2\right)\cdot 11^{4} +O\left(11^{ 5 }\right)$
$r_{ 7 }$ $=$ $ 4 a + 1 + \left(9 a + 4\right)\cdot 11 + \left(6 a + 7\right)\cdot 11^{2} + 9\cdot 11^{3} + \left(10 a + 7\right)\cdot 11^{4} +O\left(11^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 7 }$

Cycle notation
$(1,5)(2,4)(3,7)$
$(1,7)(2,3)(4,6)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 7 }$ Character value
$1$$1$$()$$2$
$7$$2$$(1,5)(2,4)(3,7)$$0$
$2$$7$$(1,5,7,2,6,4,3)$$\zeta_{7}^{5} + \zeta_{7}^{2}$
$2$$7$$(1,7,6,3,5,2,4)$$\zeta_{7}^{4} + \zeta_{7}^{3}$
$2$$7$$(1,2,3,7,4,5,6)$$-\zeta_{7}^{5} - \zeta_{7}^{4} - \zeta_{7}^{3} - \zeta_{7}^{2} - 1$
The blue line marks the conjugacy class containing complex conjugation.