Properties

Label 2.1800.24t22.a
Dimension $2$
Group $\textrm{GL(2,3)}$
Conductor $1800$
Indicator $0$

Related objects

Downloads

Learn more

Basic invariants

Dimension:$2$
Group:$\textrm{GL(2,3)}$
Conductor:\(1800\)\(\medspace = 2^{3} \cdot 3^{2} \cdot 5^{2} \)
Artin number field: Galois closure of 8.2.34992000000.5
Galois orbit size: $2$
Smallest permutation container: 24T22
Parity: odd
Projective image: $S_4$
Projective field: Galois closure of 4.2.10800.2

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 41 }$ to precision 10.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 41 }$: \( x^{2} + 38x + 6 \) Copy content Toggle raw display
Roots:
$r_{ 1 }$ $=$ \( 29 a + \left(8 a + 12\right)\cdot 41 + \left(a + 7\right)\cdot 41^{2} + \left(5 a + 31\right)\cdot 41^{3} + \left(25 a + 11\right)\cdot 41^{4} + \left(22 a + 37\right)\cdot 41^{5} + \left(27 a + 23\right)\cdot 41^{6} + \left(23 a + 38\right)\cdot 41^{7} + \left(30 a + 25\right)\cdot 41^{8} + \left(40 a + 20\right)\cdot 41^{9} +O(41^{10})\) Copy content Toggle raw display
$r_{ 2 }$ $=$ \( 12 a + 5 + \left(32 a + 9\right)\cdot 41 + \left(39 a + 2\right)\cdot 41^{2} + \left(35 a + 4\right)\cdot 41^{3} + 15 a\cdot 41^{4} + \left(18 a + 39\right)\cdot 41^{5} + \left(13 a + 1\right)\cdot 41^{6} + 17 a\cdot 41^{7} + \left(10 a + 12\right)\cdot 41^{8} + 30\cdot 41^{9} +O(41^{10})\) Copy content Toggle raw display
$r_{ 3 }$ $=$ \( 26 a + 9 + \left(6 a + 27\right)\cdot 41 + \left(30 a + 17\right)\cdot 41^{2} + \left(27 a + 14\right)\cdot 41^{3} + \left(34 a + 18\right)\cdot 41^{4} + \left(40 a + 4\right)\cdot 41^{5} + \left(11 a + 30\right)\cdot 41^{6} + \left(28 a + 1\right)\cdot 41^{7} + \left(34 a + 10\right)\cdot 41^{8} + \left(33 a + 28\right)\cdot 41^{9} +O(41^{10})\) Copy content Toggle raw display
$r_{ 4 }$ $=$ \( 33 + 14\cdot 41 + 12\cdot 41^{2} + 6\cdot 41^{3} + 29\cdot 41^{4} + 26\cdot 41^{5} + 28\cdot 41^{6} + 34\cdot 41^{7} + 24\cdot 41^{8} + 34\cdot 41^{9} +O(41^{10})\) Copy content Toggle raw display
$r_{ 5 }$ $=$ \( 5 + 40\cdot 41 + 10\cdot 41^{2} + 33\cdot 41^{3} + 34\cdot 41^{4} + 28\cdot 41^{5} + 21\cdot 41^{6} + 38\cdot 41^{7} + 20\cdot 41^{8} + 10\cdot 41^{9} +O(41^{10})\) Copy content Toggle raw display
$r_{ 6 }$ $=$ \( 15 a + 5 + \left(34 a + 21\right)\cdot 41 + \left(10 a + 19\right)\cdot 41^{2} + \left(13 a + 26\right)\cdot 41^{3} + \left(6 a + 12\right)\cdot 41^{4} + 10\cdot 41^{5} + \left(29 a + 25\right)\cdot 41^{6} + \left(12 a + 33\right)\cdot 41^{7} + \left(6 a + 3\right)\cdot 41^{8} + \left(7 a + 13\right)\cdot 41^{9} +O(41^{10})\) Copy content Toggle raw display
$r_{ 7 }$ $=$ \( 37 a + \left(22 a + 4\right)\cdot 41 + 37\cdot 41^{2} + \left(9 a + 10\right)\cdot 41^{3} + \left(20 a + 23\right)\cdot 41^{4} + \left(35 a + 6\right)\cdot 41^{5} + \left(38 a + 37\right)\cdot 41^{6} + \left(30 a + 1\right)\cdot 41^{7} + \left(12 a + 9\right)\cdot 41^{8} + \left(26 a + 21\right)\cdot 41^{9} +O(41^{10})\) Copy content Toggle raw display
$r_{ 8 }$ $=$ \( 4 a + 29 + \left(18 a + 35\right)\cdot 41 + \left(40 a + 15\right)\cdot 41^{2} + \left(31 a + 37\right)\cdot 41^{3} + \left(20 a + 33\right)\cdot 41^{4} + \left(5 a + 10\right)\cdot 41^{5} + \left(2 a + 36\right)\cdot 41^{6} + \left(10 a + 14\right)\cdot 41^{7} + \left(28 a + 16\right)\cdot 41^{8} + \left(14 a + 5\right)\cdot 41^{9} +O(41^{10})\) Copy content Toggle raw display

Generators of the action on the roots $r_1, \ldots, r_{ 8 }$

Cycle notation
$(1,8)(2,7)(3,6)(4,5)$
$(1,7,8,2)(3,5,6,4)$
$(1,4,8,5)(2,3,7,6)$
$(2,5)(3,6)(4,7)$
$(2,6,4)(3,5,7)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 8 }$ Character values
$c1$ $c2$
$1$ $1$ $()$ $2$ $2$
$1$ $2$ $(1,8)(2,7)(3,6)(4,5)$ $-2$ $-2$
$12$ $2$ $(2,5)(3,6)(4,7)$ $0$ $0$
$8$ $3$ $(1,4,3)(5,6,8)$ $-1$ $-1$
$6$ $4$ $(1,4,8,5)(2,3,7,6)$ $0$ $0$
$8$ $6$ $(1,6,4,8,3,5)(2,7)$ $1$ $1$
$6$ $8$ $(1,4,6,7,8,5,3,2)$ $-\zeta_{8}^{3} - \zeta_{8}$ $\zeta_{8}^{3} + \zeta_{8}$
$6$ $8$ $(1,5,6,2,8,4,3,7)$ $\zeta_{8}^{3} + \zeta_{8}$ $-\zeta_{8}^{3} - \zeta_{8}$
The blue line marks the conjugacy class containing complex conjugation.