Properties

 Label 2.1205.4t3.a.a Dimension $2$ Group $D_{4}$ Conductor $1205$ Root number $1$ Indicator $1$

Related objects

Basic invariants

 Dimension: $2$ Group: $D_{4}$ Conductor: $$1205$$$$\medspace = 5 \cdot 241$$ Frobenius-Schur indicator: $1$ Root number: $1$ Artin number field: Galois closure of 4.0.290405.1 Galois orbit size: $1$ Smallest permutation container: $D_{4}$ Parity: even Determinant: 1.1205.2t1.a.a Projective image: $C_2^2$ Projective field: Galois closure of $$\Q(\sqrt{5}, \sqrt{241})$$

Defining polynomial

 $f(x)$ $=$ $x^{4} - 2 x^{3} + 18 x^{2} - 17 x + 12$.

The roots of $f$ are computed in $\Q_{ 41 }$ to precision 5.

Roots:
 $r_{ 1 }$ $=$ $8 + 8\cdot 41 + 11\cdot 41^{2} + 2\cdot 41^{3} + 8\cdot 41^{4} +O\left(41^{ 5 }\right)$ $r_{ 2 }$ $=$ $12 + 32\cdot 41 + 7\cdot 41^{2} + 36\cdot 41^{3} + 9\cdot 41^{4} +O\left(41^{ 5 }\right)$ $r_{ 3 }$ $=$ $30 + 8\cdot 41 + 33\cdot 41^{2} + 4\cdot 41^{3} + 31\cdot 41^{4} +O\left(41^{ 5 }\right)$ $r_{ 4 }$ $=$ $34 + 32\cdot 41 + 29\cdot 41^{2} + 38\cdot 41^{3} + 32\cdot 41^{4} +O\left(41^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 4 }$

 Cycle notation $(1,4)$ $(1,2)(3,4)$

Character values on conjugacy classes

 Size Order Action on $r_1, \ldots, r_{ 4 }$ Character value $1$ $1$ $()$ $2$ $1$ $2$ $(1,4)(2,3)$ $-2$ $2$ $2$ $(1,2)(3,4)$ $0$ $2$ $2$ $(1,4)$ $0$ $2$ $4$ $(1,3,4,2)$ $0$

The blue line marks the conjugacy class containing complex conjugation.