Properties

Label 1.1673.6t1.a.b
Dimension $1$
Group $C_6$
Conductor $1673$
Root number not computed
Indicator $0$

Related objects

Downloads

Learn more

Basic invariants

Dimension: $1$
Group: $C_6$
Conductor: \(1673\)\(\medspace = 7 \cdot 239 \)
Artin field: Galois closure of 6.0.32778257519.2
Galois orbit size: $2$
Smallest permutation container: $C_6$
Parity: odd
Dirichlet character: \(\chi_{1673}(1194,\cdot)\)
Projective image: $C_1$
Projective field: Galois closure of \(\Q\)

Defining polynomial

$f(x)$$=$ \( x^{6} - x^{5} + 175x^{4} - 117x^{3} + 10745x^{2} - 3481x + 230579 \) Copy content Toggle raw display .

The roots of $f$ are computed in an extension of $\Q_{ 13 }$ to precision 5.

Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 13 }$: \( x^{2} + 12x + 2 \) Copy content Toggle raw display

Roots:
$r_{ 1 }$ $=$ \( 7 a + 4 + \left(9 a + 11\right)\cdot 13 + \left(11 a + 7\right)\cdot 13^{2} + \left(a + 5\right)\cdot 13^{3} + \left(11 a + 6\right)\cdot 13^{4} +O(13^{5})\) Copy content Toggle raw display
$r_{ 2 }$ $=$ \( 7 a + 5 + \left(9 a + 1\right)\cdot 13 + \left(11 a + 8\right)\cdot 13^{2} + \left(a + 9\right)\cdot 13^{3} + \left(11 a + 8\right)\cdot 13^{4} +O(13^{5})\) Copy content Toggle raw display
$r_{ 3 }$ $=$ \( 6 a + 11 + 3 a\cdot 13 + \left(a + 10\right)\cdot 13^{2} + \left(11 a + 8\right)\cdot 13^{3} + \left(a + 2\right)\cdot 13^{4} +O(13^{5})\) Copy content Toggle raw display
$r_{ 4 }$ $=$ \( 6 a + 1 + \left(3 a + 12\right)\cdot 13 + \left(a + 8\right)\cdot 13^{2} + \left(11 a + 2\right)\cdot 13^{3} + \left(a + 6\right)\cdot 13^{4} +O(13^{5})\) Copy content Toggle raw display
$r_{ 5 }$ $=$ \( 7 a + 7 + \left(9 a + 9\right)\cdot 13 + \left(11 a + 6\right)\cdot 13^{2} + \left(a + 12\right)\cdot 13^{3} + \left(11 a + 9\right)\cdot 13^{4} +O(13^{5})\) Copy content Toggle raw display
$r_{ 6 }$ $=$ \( 6 a + 12 + \left(3 a + 3\right)\cdot 13 + \left(a + 10\right)\cdot 13^{2} + \left(11 a + 12\right)\cdot 13^{3} + \left(a + 4\right)\cdot 13^{4} +O(13^{5})\) Copy content Toggle raw display

Generators of the action on the roots $r_1, \ldots, r_{ 6 }$

Cycle notation
$(1,2,5)(3,6,4)$
$(1,3)(2,6)(4,5)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 6 }$ Character value
$1$$1$$()$$1$
$1$$2$$(1,3)(2,6)(4,5)$$-1$
$1$$3$$(1,2,5)(3,6,4)$$\zeta_{3}$
$1$$3$$(1,5,2)(3,4,6)$$-\zeta_{3} - 1$
$1$$6$$(1,6,5,3,2,4)$$-\zeta_{3}$
$1$$6$$(1,4,2,3,5,6)$$\zeta_{3} + 1$

The blue line marks the conjugacy class containing complex conjugation.