Properties

Label 1.7_1429.3t1.1
Dimension 1
Group $C_3$
Conductor $ 7 \cdot 1429 $
Frobenius-Schur indicator 0

Related objects

Learn more about

Basic invariants

Dimension:$1$
Group:$C_3$
Conductor:$10003= 7 \cdot 1429 $
Artin number field: Splitting field of $f= x^{3} - x^{2} - 3334 x - 10744 $ over $\Q$
Size of Galois orbit: 2
Smallest containing permutation representation: $C_3$
Parity: Even

Galois action

Roots of defining polynomial

The roots of $f$ are computed in $\Q_{ 17 }$ to precision 7.
Roots:
$r_{ 1 }$ $=$ $ 7\cdot 17 + 10\cdot 17^{2} + 13\cdot 17^{3} + 13\cdot 17^{4} + 16\cdot 17^{5} + 14\cdot 17^{6} +O\left(17^{ 7 }\right)$
$r_{ 2 }$ $=$ $ 2 + 12\cdot 17 + 15\cdot 17^{2} + 14\cdot 17^{3} + 12\cdot 17^{4} + 11\cdot 17^{5} + 6\cdot 17^{6} +O\left(17^{ 7 }\right)$
$r_{ 3 }$ $=$ $ 16 + 14\cdot 17 + 7\cdot 17^{2} + 5\cdot 17^{3} + 7\cdot 17^{4} + 5\cdot 17^{5} + 12\cdot 17^{6} +O\left(17^{ 7 }\right)$

Generators of the action on the roots $ r_{ 1 }, r_{ 2 }, r_{ 3 } $

Cycle notation
$(1,2,3)$

Character values on conjugacy classes

SizeOrderAction on $ r_{ 1 }, r_{ 2 }, r_{ 3 } $ Character values
$c1$ $c2$
$1$ $1$ $()$ $1$ $1$
$1$ $3$ $(1,2,3)$ $\zeta_{3}$ $-\zeta_{3} - 1$
$1$ $3$ $(1,3,2)$ $-\zeta_{3} - 1$ $\zeta_{3}$
The blue line marks the conjugacy class containing complex conjugation.