Properties

Label 1.79.6t1.a.a
Dimension $1$
Group $C_6$
Conductor $79$
Root number not computed
Indicator $0$

Related objects

Downloads

Learn more

Basic invariants

Dimension: $1$
Group: $C_6$
Conductor: \(79\)
Artin field: Galois closure of 6.0.3077056399.1
Galois orbit size: $2$
Smallest permutation container: $C_6$
Parity: odd
Dirichlet character: \(\chi_{79}(24,\cdot)\)
Projective image: $C_1$
Projective field: Galois closure of \(\Q\)

Defining polynomial

$f(x)$$=$ \( x^{6} - x^{5} + 7x^{4} - 63x^{3} - 81x^{2} + 353x + 541 \) Copy content Toggle raw display .

The roots of $f$ are computed in an extension of $\Q_{ 41 }$ to precision 5.

Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 41 }$: \( x^{2} + 38x + 6 \) Copy content Toggle raw display

Roots:
$r_{ 1 }$ $=$ \( 39 a + 32 + \left(39 a + 37\right)\cdot 41 + \left(5 a + 12\right)\cdot 41^{2} + \left(27 a + 38\right)\cdot 41^{3} + \left(13 a + 7\right)\cdot 41^{4} +O(41^{5})\) Copy content Toggle raw display
$r_{ 2 }$ $=$ \( 3 a + 16 + \left(37 a + 33\right)\cdot 41 + \left(31 a + 18\right)\cdot 41^{2} + \left(36 a + 17\right)\cdot 41^{3} + \left(18 a + 26\right)\cdot 41^{4} +O(41^{5})\) Copy content Toggle raw display
$r_{ 3 }$ $=$ \( 6 a + 24 + \left(25 a + 4\right)\cdot 41 + \left(21 a + 12\right)\cdot 41^{2} + \left(11 a + 4\right)\cdot 41^{3} + \left(40 a + 17\right)\cdot 41^{4} +O(41^{5})\) Copy content Toggle raw display
$r_{ 4 }$ $=$ \( 2 a + 26 + \left(a + 36\right)\cdot 41 + \left(35 a + 31\right)\cdot 41^{2} + \left(13 a + 31\right)\cdot 41^{3} + \left(27 a + 21\right)\cdot 41^{4} +O(41^{5})\) Copy content Toggle raw display
$r_{ 5 }$ $=$ \( 35 a + 1 + \left(15 a + 33\right)\cdot 41 + \left(19 a + 10\right)\cdot 41^{2} + \left(29 a + 17\right)\cdot 41^{3} + 3\cdot 41^{4} +O(41^{5})\) Copy content Toggle raw display
$r_{ 6 }$ $=$ \( 38 a + 25 + \left(3 a + 18\right)\cdot 41 + \left(9 a + 36\right)\cdot 41^{2} + \left(4 a + 13\right)\cdot 41^{3} + \left(22 a + 5\right)\cdot 41^{4} +O(41^{5})\) Copy content Toggle raw display

Generators of the action on the roots $r_1, \ldots, r_{ 6 }$

Cycle notation
$(1,4)(2,6)(3,5)$
$(1,3,2)(4,5,6)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 6 }$ Character value
$1$$1$$()$$1$
$1$$2$$(1,4)(2,6)(3,5)$$-1$
$1$$3$$(1,3,2)(4,5,6)$$\zeta_{3}$
$1$$3$$(1,2,3)(4,6,5)$$-\zeta_{3} - 1$
$1$$6$$(1,5,2,4,3,6)$$-\zeta_{3}$
$1$$6$$(1,6,3,4,2,5)$$\zeta_{3} + 1$

The blue line marks the conjugacy class containing complex conjugation.