# Properties

 Label 1.7.3t1.a.b Dimension 1 Group $C_3$ Conductor $7$ Root number not computed Frobenius-Schur indicator 0

# Related objects

## Basic invariants

 Dimension: $1$ Group: $C_3$ Conductor: $7$ Artin number field: Splitting field of $$\Q(\zeta_{7})^+$$ defined by $f= x^{3} - x^{2} - 2 x + 1$ over $\Q$ Size of Galois orbit: 2 Smallest containing permutation representation: $C_3$ Parity: Even Corresponding Dirichlet character: $$\chi_{7}(4,\cdot)$$ Projective image: $C_1$ Projective field: $$\Q$$

## Galois action

### Roots of defining polynomial

The roots of $f$ are computed in $\Q_{ 13 }$ to precision 5.
Roots:
 $r_{ 1 }$ $=$ $3 + 2\cdot 13 + 5\cdot 13^{2} + 5\cdot 13^{3} + 11\cdot 13^{4} +O\left(13^{ 5 }\right)$ $r_{ 2 }$ $=$ $5 + 10\cdot 13 + 3\cdot 13^{2} + 8\cdot 13^{3} + 12\cdot 13^{4} +O\left(13^{ 5 }\right)$ $r_{ 3 }$ $=$ $6 + 4\cdot 13^{2} + 12\cdot 13^{3} + 13^{4} +O\left(13^{ 5 }\right)$

### Generators of the action on the roots $r_{ 1 }, r_{ 2 }, r_{ 3 }$

 Cycle notation $(1,2,3)$

### Character values on conjugacy classes

 Size Order Action on $r_{ 1 }, r_{ 2 }, r_{ 3 }$ Character value $1$ $1$ $()$ $1$ $1$ $3$ $(1,2,3)$ $-\zeta_{3} - 1$ $1$ $3$ $(1,3,2)$ $\zeta_{3}$
The blue line marks the conjugacy class containing complex conjugation.