Properties

Label 1.68.8t1.a.c
Dimension $1$
Group $C_8$
Conductor $68$
Root number not computed
Indicator $0$

Related objects

Downloads

Learn more

Basic invariants

Dimension: $1$
Group: $C_8$
Conductor: \(68\)\(\medspace = 2^{2} \cdot 17 \)
Artin field: Galois closure of 8.0.105046700288.1
Galois orbit size: $4$
Smallest permutation container: $C_8$
Parity: odd
Dirichlet character: \(\chi_{68}(15,\cdot)\)
Projective image: $C_1$
Projective field: Galois closure of \(\Q\)

Defining polynomial

$f(x)$$=$ \( x^{8} + 17x^{6} + 68x^{4} + 85x^{2} + 17 \) Copy content Toggle raw display .

The roots of $f$ are computed in $\Q_{ 47 }$ to precision 5.

Roots:
$r_{ 1 }$ $=$ \( 1 + 16\cdot 47 + 42\cdot 47^{2} + 9\cdot 47^{3} + 41\cdot 47^{4} +O(47^{5})\) Copy content Toggle raw display
$r_{ 2 }$ $=$ \( 7 + 8\cdot 47 + 44\cdot 47^{2} + 39\cdot 47^{3} + 36\cdot 47^{4} +O(47^{5})\) Copy content Toggle raw display
$r_{ 3 }$ $=$ \( 10 + 24\cdot 47 + 18\cdot 47^{2} + 23\cdot 47^{3} + 16\cdot 47^{4} +O(47^{5})\) Copy content Toggle raw display
$r_{ 4 }$ $=$ \( 16 + 14\cdot 47 + 4\cdot 47^{2} + 35\cdot 47^{3} + 23\cdot 47^{4} +O(47^{5})\) Copy content Toggle raw display
$r_{ 5 }$ $=$ \( 31 + 32\cdot 47 + 42\cdot 47^{2} + 11\cdot 47^{3} + 23\cdot 47^{4} +O(47^{5})\) Copy content Toggle raw display
$r_{ 6 }$ $=$ \( 37 + 22\cdot 47 + 28\cdot 47^{2} + 23\cdot 47^{3} + 30\cdot 47^{4} +O(47^{5})\) Copy content Toggle raw display
$r_{ 7 }$ $=$ \( 40 + 38\cdot 47 + 2\cdot 47^{2} + 7\cdot 47^{3} + 10\cdot 47^{4} +O(47^{5})\) Copy content Toggle raw display
$r_{ 8 }$ $=$ \( 46 + 30\cdot 47 + 4\cdot 47^{2} + 37\cdot 47^{3} + 5\cdot 47^{4} +O(47^{5})\) Copy content Toggle raw display

Generators of the action on the roots $r_1, \ldots, r_{ 8 }$

Cycle notation
$(1,8)(2,7)(3,6)(4,5)$
$(1,2,8,7)(3,5,6,4)$
$(1,5,2,6,8,4,7,3)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 8 }$ Character value
$1$$1$$()$$1$
$1$$2$$(1,8)(2,7)(3,6)(4,5)$$-1$
$1$$4$$(1,2,8,7)(3,5,6,4)$$\zeta_{8}^{2}$
$1$$4$$(1,7,8,2)(3,4,6,5)$$-\zeta_{8}^{2}$
$1$$8$$(1,5,2,6,8,4,7,3)$$-\zeta_{8}$
$1$$8$$(1,6,7,5,8,3,2,4)$$-\zeta_{8}^{3}$
$1$$8$$(1,4,2,3,8,5,7,6)$$\zeta_{8}$
$1$$8$$(1,3,7,4,8,6,2,5)$$\zeta_{8}^{3}$

The blue line marks the conjugacy class containing complex conjugation.