Properties

Label 1.60.4t1.a.a
Dimension 1
Group $C_4$
Conductor $ 2^{2} \cdot 3 \cdot 5 $
Root number not computed
Frobenius-Schur indicator 0

Related objects

Learn more about

Basic invariants

Dimension:$1$
Group:$C_4$
Conductor:$60= 2^{2} \cdot 3 \cdot 5 $
Artin number field: Splitting field of 4.0.18000.1 defined by $f= x^{4} + 15 x^{2} + 45 $ over $\Q$
Size of Galois orbit: 2
Smallest containing permutation representation: $C_4$
Parity: Odd
Corresponding Dirichlet character: \(\chi_{60}(23,\cdot)\)
Projective image: $C_1$
Projective field: \(\Q\)

Galois action

Roots of defining polynomial

The roots of $f$ are computed in $\Q_{ 11 }$ to precision 6.
Roots:
$r_{ 1 }$ $=$ $ 2 + 8\cdot 11^{2} + 8\cdot 11^{3} + 4\cdot 11^{4} + 8\cdot 11^{5} +O\left(11^{ 6 }\right)$
$r_{ 2 }$ $=$ $ 5 + 4\cdot 11 + 8\cdot 11^{2} + 9\cdot 11^{3} + 3\cdot 11^{4} +O\left(11^{ 6 }\right)$
$r_{ 3 }$ $=$ $ 6 + 6\cdot 11 + 2\cdot 11^{2} + 11^{3} + 7\cdot 11^{4} + 10\cdot 11^{5} +O\left(11^{ 6 }\right)$
$r_{ 4 }$ $=$ $ 9 + 10\cdot 11 + 2\cdot 11^{2} + 2\cdot 11^{3} + 6\cdot 11^{4} + 2\cdot 11^{5} +O\left(11^{ 6 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 4 }$

Cycle notation
$(1,4)(2,3)$
$(1,2,4,3)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 4 }$ Character value
$1$$1$$()$$1$
$1$$2$$(1,4)(2,3)$$-1$
$1$$4$$(1,2,4,3)$$\zeta_{4}$
$1$$4$$(1,3,4,2)$$-\zeta_{4}$
The blue line marks the conjugacy class containing complex conjugation.