Properties

Label 1.5_7_29.4t1.3c2
Dimension 1
Group $C_4$
Conductor $ 5 \cdot 7 \cdot 29 $
Root number not computed
Frobenius-Schur indicator 0

Related objects

Learn more about

Basic invariants

Dimension:$1$
Group:$C_4$
Conductor:$1015= 5 \cdot 7 \cdot 29 $
Artin number field: Splitting field of $f= x^{4} - x^{3} + 236 x^{2} + 9 x + 18351 $ over $\Q$
Size of Galois orbit: 2
Smallest containing permutation representation: $C_4$
Parity: Odd
Corresponding Dirichlet character: \(\chi_{1015}(713,\cdot)\)

Galois action

Roots of defining polynomial

The roots of $f$ are computed in $\Q_{ 17 }$ to precision 5.
Roots:
$r_{ 1 }$ $=$ $ 4 + 2\cdot 17 + 8\cdot 17^{2} + 7\cdot 17^{3} +O\left(17^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 8 + 8\cdot 17 + 14\cdot 17^{2} + 4\cdot 17^{3} + 7\cdot 17^{4} +O\left(17^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 11 + 3\cdot 17 + 11\cdot 17^{2} + 7\cdot 17^{3} + 7\cdot 17^{4} +O\left(17^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 12 + 2\cdot 17 + 14\cdot 17^{3} + 17^{4} +O\left(17^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 4 }$

Cycle notation
$(1,4)(2,3)$
$(1,2,4,3)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 4 }$ Character value
$1$$1$$()$$1$
$1$$2$$(1,4)(2,3)$$-1$
$1$$4$$(1,2,4,3)$$-\zeta_{4}$
$1$$4$$(1,3,4,2)$$\zeta_{4}$
The blue line marks the conjugacy class containing complex conjugation.