Properties

Label 1.5_31.4t1.1c2
Dimension 1
Group $C_4$
Conductor $ 5 \cdot 31 $
Root number not computed
Frobenius-Schur indicator 0

Related objects

Learn more about

Basic invariants

Dimension:$1$
Group:$C_4$
Conductor:$155= 5 \cdot 31 $
Artin number field: Splitting field of $f= x^{4} - x^{3} - 39 x^{2} + 39 x + 281 $ over $\Q$
Size of Galois orbit: 2
Smallest containing permutation representation: $C_4$
Parity: Even
Corresponding Dirichlet character: \(\chi_{155}(92,\cdot)\)

Galois action

Roots of defining polynomial

The roots of $f$ are computed in $\Q_{ 29 }$ to precision 5.
Roots: \[ \begin{aligned} r_{ 1 } &= 10 + 4\cdot 29 + 21\cdot 29^{2} + 9\cdot 29^{3} + 22\cdot 29^{4} +O\left(29^{ 5 }\right) \\ r_{ 2 } &= 13 + 21\cdot 29 + 28\cdot 29^{2} + 20\cdot 29^{3} + 19\cdot 29^{4} +O\left(29^{ 5 }\right) \\ r_{ 3 } &= 14 + 3\cdot 29 + 3\cdot 29^{2} + 20\cdot 29^{3} + 20\cdot 29^{4} +O\left(29^{ 5 }\right) \\ r_{ 4 } &= 22 + 28\cdot 29 + 4\cdot 29^{2} + 7\cdot 29^{3} + 24\cdot 29^{4} +O\left(29^{ 5 }\right) \\ \end{aligned}\]

Generators of the action on the roots $r_1, \ldots, r_{ 4 }$

Cycle notation
$(1,2,3,4)$
$(1,3)(2,4)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 4 }$ Character value
$1$$1$$()$$1$
$1$$2$$(1,3)(2,4)$$-1$
$1$$4$$(1,2,3,4)$$-\zeta_{4}$
$1$$4$$(1,4,3,2)$$\zeta_{4}$
The blue line marks the conjugacy class containing complex conjugation.