Properties

Label 1.3e2_113.6t1.1c2
Dimension 1
Group $C_6$
Conductor $ 3^{2} \cdot 113 $
Root number not computed
Frobenius-Schur indicator 0

Related objects

Learn more about

Basic invariants

Dimension:$1$
Group:$C_6$
Conductor:$1017= 3^{2} \cdot 113 $
Artin number field: Splitting field of $f= x^{6} + 168 x^{4} - 85 x^{3} + 7056 x^{2} - 7140 x + 73081 $ over $\Q$
Size of Galois orbit: 2
Smallest containing permutation representation: $C_6$
Parity: Odd
Corresponding Dirichlet character: \(\chi_{1017}(338,\cdot)\)

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 19 }$ to precision 5.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 19 }$: $ x^{2} + 18 x + 2 $
Roots:
$r_{ 1 }$ $=$ $ 7 a + 11 + \left(15 a + 10\right)\cdot 19 + \left(a + 15\right)\cdot 19^{2} + \left(13 a + 16\right)\cdot 19^{3} + \left(14 a + 18\right)\cdot 19^{4} +O\left(19^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 6 a + 5 + \left(4 a + 12\right)\cdot 19 + \left(13 a + 7\right)\cdot 19^{2} + 3 a\cdot 19^{3} + \left(10 a + 7\right)\cdot 19^{4} +O\left(19^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 18 a + 16 + \left(7 a + 16\right)\cdot 19 + \left(11 a + 5\right)\cdot 19^{2} + \left(9 a + 11\right)\cdot 19^{3} + \left(14 a + 5\right)\cdot 19^{4} +O\left(19^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 12 a + 18 + \left(3 a + 18\right)\cdot 19 + \left(17 a + 1\right)\cdot 19^{2} + \left(5 a + 9\right)\cdot 19^{3} + \left(4 a + 1\right)\cdot 19^{4} +O\left(19^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 13 a + 11 + \left(14 a + 10\right)\cdot 19 + \left(5 a + 16\right)\cdot 19^{2} + \left(15 a + 9\right)\cdot 19^{3} + \left(8 a + 13\right)\cdot 19^{4} +O\left(19^{ 5 }\right)$
$r_{ 6 }$ $=$ $ a + 15 + \left(11 a + 6\right)\cdot 19 + \left(7 a + 9\right)\cdot 19^{2} + \left(9 a + 9\right)\cdot 19^{3} + \left(4 a + 10\right)\cdot 19^{4} +O\left(19^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 6 }$

Cycle notation
$(1,4)(2,5)(3,6)$
$(1,2,3,4,5,6)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 6 }$ Character value
$1$$1$$()$$1$
$1$$2$$(1,4)(2,5)(3,6)$$-1$
$1$$3$$(1,3,5)(2,4,6)$$-\zeta_{3} - 1$
$1$$3$$(1,5,3)(2,6,4)$$\zeta_{3}$
$1$$6$$(1,2,3,4,5,6)$$-\zeta_{3}$
$1$$6$$(1,6,5,4,3,2)$$\zeta_{3} + 1$
The blue line marks the conjugacy class containing complex conjugation.