Properties

Label 1.3_11_31.6t1.1c1
Dimension 1
Group $C_6$
Conductor $ 3 \cdot 11 \cdot 31 $
Root number not computed
Frobenius-Schur indicator 0

Related objects

Learn more about

Basic invariants

Dimension:$1$
Group:$C_6$
Conductor:$1023= 3 \cdot 11 \cdot 31 $
Artin number field: Splitting field of $f= x^{6} - x^{5} - 45 x^{4} + 21 x^{3} + 308 x^{2} - 236 x + 16 $ over $\Q$
Size of Galois orbit: 2
Smallest containing permutation representation: $C_6$
Parity: Even
Corresponding Dirichlet character: \(\chi_{1023}(428,\cdot)\)

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 23 }$ to precision 5.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 23 }$: $ x^{2} + 21 x + 5 $
Roots:
$r_{ 1 }$ $=$ $ 10 a + 13 + \left(17 a + 17\right)\cdot 23 + 2\cdot 23^{2} + \left(a + 1\right)\cdot 23^{3} + 14 a\cdot 23^{4} +O\left(23^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 10 a + 7 + \left(17 a + 6\right)\cdot 23 + \left(a + 9\right)\cdot 23^{3} + 14 a\cdot 23^{4} +O\left(23^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 10 a + 8 + \left(17 a + 19\right)\cdot 23 + 20\cdot 23^{2} + \left(a + 10\right)\cdot 23^{3} + \left(14 a + 16\right)\cdot 23^{4} +O\left(23^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 13 a + 5 + \left(5 a + 21\right)\cdot 23 + \left(22 a + 4\right)\cdot 23^{2} + \left(21 a + 12\right)\cdot 23^{3} + \left(8 a + 20\right)\cdot 23^{4} +O\left(23^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 13 a + 10 + \left(5 a + 19\right)\cdot 23 + \left(22 a + 9\right)\cdot 23^{2} + \left(21 a + 2\right)\cdot 23^{3} + \left(8 a + 4\right)\cdot 23^{4} +O\left(23^{ 5 }\right)$
$r_{ 6 }$ $=$ $ 13 a + 4 + \left(5 a + 8\right)\cdot 23 + \left(22 a + 7\right)\cdot 23^{2} + \left(21 a + 10\right)\cdot 23^{3} + \left(8 a + 4\right)\cdot 23^{4} +O\left(23^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 6 }$

Cycle notation
$(1,5)(2,6)(3,4)$
$(1,2,3)(4,5,6)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 6 }$ Character value
$1$$1$$()$$1$
$1$$2$$(1,5)(2,6)(3,4)$$-1$
$1$$3$$(1,2,3)(4,5,6)$$\zeta_{3}$
$1$$3$$(1,3,2)(4,6,5)$$-\zeta_{3} - 1$
$1$$6$$(1,6,3,5,2,4)$$-\zeta_{3}$
$1$$6$$(1,4,2,5,3,6)$$\zeta_{3} + 1$
The blue line marks the conjugacy class containing complex conjugation.