Properties

Label 1.2e3_17.4t1.2c1
Dimension 1
Group $C_4$
Conductor $ 2^{3} \cdot 17 $
Root number not computed
Frobenius-Schur indicator 0

Related objects

Learn more about

Basic invariants

Dimension:$1$
Group:$C_4$
Conductor:$136= 2^{3} \cdot 17 $
Artin number field: Splitting field of $f= x^{4} + 34 x^{2} + 272 $ over $\Q$
Size of Galois orbit: 2
Smallest containing permutation representation: $C_4$
Parity: Odd
Corresponding Dirichlet character: \(\chi_{136}(115,\cdot)\)

Galois action

Roots of defining polynomial

The roots of $f$ are computed in $\Q_{ 53 }$ to precision 5.
Roots: \[ \begin{aligned} r_{ 1 } &= 2 + 5\cdot 53 + 2\cdot 53^{2} + 33\cdot 53^{3} + 43\cdot 53^{4} +O\left(53^{ 5 }\right) \\ r_{ 2 } &= 11 + 11\cdot 53 + 5\cdot 53^{3} + 32\cdot 53^{4} +O\left(53^{ 5 }\right) \\ r_{ 3 } &= 42 + 41\cdot 53 + 52\cdot 53^{2} + 47\cdot 53^{3} + 20\cdot 53^{4} +O\left(53^{ 5 }\right) \\ r_{ 4 } &= 51 + 47\cdot 53 + 50\cdot 53^{2} + 19\cdot 53^{3} + 9\cdot 53^{4} +O\left(53^{ 5 }\right) \\ \end{aligned}\]

Generators of the action on the roots $r_1, \ldots, r_{ 4 }$

Cycle notation
$(1,4)(2,3)$
$(1,2,4,3)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 4 }$ Character value
$1$$1$$()$$1$
$1$$2$$(1,4)(2,3)$$-1$
$1$$4$$(1,2,4,3)$$\zeta_{4}$
$1$$4$$(1,3,4,2)$$-\zeta_{4}$
The blue line marks the conjugacy class containing complex conjugation.