Properties

Label 1.2e3_13.4t1.2c2
Dimension 1
Group $C_4$
Conductor $ 2^{3} \cdot 13 $
Root number not computed
Frobenius-Schur indicator 0

Related objects

Learn more about

Basic invariants

Dimension:$1$
Group:$C_4$
Conductor:$104= 2^{3} \cdot 13 $
Artin number field: Splitting field of $f= x^{4} + 26 x^{2} + 52 $ over $\Q$
Size of Galois orbit: 2
Smallest containing permutation representation: $C_4$
Parity: Odd
Corresponding Dirichlet character: \(\chi_{104}(21,\cdot)\)

Galois action

Roots of defining polynomial

The roots of $f$ are computed in $\Q_{ 43 }$ to precision 5.
Roots:
$r_{ 1 }$ $=$ $ 2 + 24\cdot 43 + 9\cdot 43^{2} + 3\cdot 43^{3} + 43^{4} +O\left(43^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 20 + 21\cdot 43 + 13\cdot 43^{3} + 8\cdot 43^{4} +O\left(43^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 23 + 21\cdot 43 + 42\cdot 43^{2} + 29\cdot 43^{3} + 34\cdot 43^{4} +O\left(43^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 41 + 18\cdot 43 + 33\cdot 43^{2} + 39\cdot 43^{3} + 41\cdot 43^{4} +O\left(43^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 4 }$

Cycle notation
$(1,4)(2,3)$
$(1,2,4,3)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 4 }$ Character value
$1$$1$$()$$1$
$1$$2$$(1,4)(2,3)$$-1$
$1$$4$$(1,2,4,3)$$-\zeta_{4}$
$1$$4$$(1,3,4,2)$$\zeta_{4}$
The blue line marks the conjugacy class containing complex conjugation.