Properties

Label 1.2e2_3_5_17.4t1.2c2
Dimension 1
Group $C_4$
Conductor $ 2^{2} \cdot 3 \cdot 5 \cdot 17 $
Root number not computed
Frobenius-Schur indicator 0

Related objects

Learn more about

Basic invariants

Dimension:$1$
Group:$C_4$
Conductor:$1020= 2^{2} \cdot 3 \cdot 5 \cdot 17 $
Artin number field: Splitting field of $f= x^{4} + 255 x^{2} + 6885 $ over $\Q$
Size of Galois orbit: 2
Smallest containing permutation representation: $C_4$
Parity: Odd
Corresponding Dirichlet character: \(\chi_{1020}(1007,\cdot)\)

Galois action

Roots of defining polynomial

The roots of $f$ are computed in $\Q_{ 23 }$ to precision 7.
Roots:
$r_{ 1 }$ $=$ $ 7 + 9\cdot 23 + 10\cdot 23^{2} + 17\cdot 23^{3} + 5\cdot 23^{4} + 22\cdot 23^{5} + 14\cdot 23^{6} +O\left(23^{ 7 }\right)$
$r_{ 2 }$ $=$ $ 8 + 17\cdot 23 + 13\cdot 23^{2} + 19\cdot 23^{3} + 21\cdot 23^{4} + 19\cdot 23^{5} + 15\cdot 23^{6} +O\left(23^{ 7 }\right)$
$r_{ 3 }$ $=$ $ 15 + 5\cdot 23 + 9\cdot 23^{2} + 3\cdot 23^{3} + 23^{4} + 3\cdot 23^{5} + 7\cdot 23^{6} +O\left(23^{ 7 }\right)$
$r_{ 4 }$ $=$ $ 16 + 13\cdot 23 + 12\cdot 23^{2} + 5\cdot 23^{3} + 17\cdot 23^{4} + 8\cdot 23^{6} +O\left(23^{ 7 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 4 }$

Cycle notation
$(1,4)(2,3)$
$(1,2,4,3)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 4 }$ Character value
$1$$1$$()$$1$
$1$$2$$(1,4)(2,3)$$-1$
$1$$4$$(1,2,4,3)$$-\zeta_{4}$
$1$$4$$(1,3,4,2)$$\zeta_{4}$
The blue line marks the conjugacy class containing complex conjugation.