Properties

Label 1.29.7t1.1c5
Dimension 1
Group $C_7$
Conductor $ 29 $
Root number not computed
Frobenius-Schur indicator 0

Related objects

Learn more about

Basic invariants

Dimension:$1$
Group:$C_7$
Conductor:$29 $
Artin number field: Splitting field of $f= x^{7} - x^{6} - 12 x^{5} + 7 x^{4} + 28 x^{3} - 14 x^{2} - 9 x - 1 $ over $\Q$
Size of Galois orbit: 6
Smallest containing permutation representation: $C_7$
Parity: Even
Corresponding Dirichlet character: \(\chi_{29}(20,\cdot)\)

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 11 }$ to precision 6.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 11 }$: $ x^{7} + 4 x + 9 $
Roots:
$r_{ 1 }$ $=$ $ a^{6} + 3 a^{5} + 3 a^{4} + 5 a^{3} + 10 a^{2} + 8 a + 2 + \left(9 a^{6} + 7 a^{5} + 6 a^{4} + 6 a^{3} + 10 a^{2} + 3 a + 9\right)\cdot 11 + \left(5 a^{6} + 3 a^{5} + 8 a^{4} + a^{3} + 10 a^{2} + 4 a + 5\right)\cdot 11^{2} + \left(8 a^{6} + 9 a^{4} + 8 a^{3} + 5 a^{2} + 5 a + 2\right)\cdot 11^{3} + \left(8 a^{6} + 4 a^{5} + 6 a^{4} + 5 a^{3} + 4 a^{2} + 7 a\right)\cdot 11^{4} + \left(8 a^{6} + 7 a^{5} + 3 a^{4} + 6 a^{3} + 3 a^{2} + a + 5\right)\cdot 11^{5} +O\left(11^{ 6 }\right)$
$r_{ 2 }$ $=$ $ 5 a^{6} + 2 a^{5} + 8 a^{4} + 2 a^{3} + 6 a^{2} + 9 a + \left(6 a^{6} + 7 a^{5} + 6 a^{4} + 4 a^{3} + 10 a^{2} + 2 a + 8\right)\cdot 11 + \left(4 a^{6} + 3 a^{4} + 9 a^{3} + 7 a^{2} + 2 a + 4\right)\cdot 11^{2} + \left(9 a^{6} + 5 a^{5} + a^{4} + 5 a^{3} + 10 a^{2} + 2\right)\cdot 11^{3} + \left(8 a^{6} + a^{5} + 6 a^{4} + 2 a^{3} + 8 a^{2} + 8 a + 5\right)\cdot 11^{4} + \left(10 a^{6} + 6 a^{5} + 5 a^{4} + 6 a^{2} + 3 a + 2\right)\cdot 11^{5} +O\left(11^{ 6 }\right)$
$r_{ 3 }$ $=$ $ 6 a^{6} + 10 a^{5} + 9 a^{4} + 10 a^{3} + 4 a^{2} + 7 a + 5 + \left(9 a^{6} + 4 a^{5} + 5 a^{4} + 7 a^{3} + 7 a^{2} + 8 a + 4\right)\cdot 11 + \left(10 a^{6} + a^{5} + 10 a^{4} + 10 a^{3} + 3 a^{2} + 5 a + 7\right)\cdot 11^{2} + \left(10 a^{5} + a^{4} + 6 a^{2} + 3 a + 9\right)\cdot 11^{3} + \left(3 a^{5} + 10 a^{4} + 9 a^{2} + 5 a + 1\right)\cdot 11^{4} + \left(3 a^{6} + 2 a^{5} + 7 a^{4} + 6 a^{3} + 7 a^{2} + 8 a + 7\right)\cdot 11^{5} +O\left(11^{ 6 }\right)$
$r_{ 4 }$ $=$ $ 7 a^{6} + 10 a^{4} + 6 a^{3} + 7 a^{2} + 7 a + 10 + \left(9 a^{5} + 5 a^{4} + 2 a^{3} + 10 a^{2} + 9 a + 6\right)\cdot 11 + \left(10 a^{5} + 8 a^{4} + 8 a^{3} + 2 a^{2} + 5 a + 9\right)\cdot 11^{2} + \left(3 a^{6} + 6 a^{4} + 4 a^{3} + 10 a^{2}\right)\cdot 11^{3} + \left(2 a^{6} + 9 a^{5} + 10 a^{4} + 4 a^{2} + a + 3\right)\cdot 11^{4} + \left(10 a^{6} + 8 a^{5} + 8 a^{4} + 2 a^{3} + a^{2} + 6 a + 8\right)\cdot 11^{5} +O\left(11^{ 6 }\right)$
$r_{ 5 }$ $=$ $ 7 a^{6} + 8 a^{5} + 7 a^{4} + 7 a^{3} + 2 a^{2} + 10 + \left(7 a^{6} + 3 a^{5} + 4 a^{3} + 4 a^{2} + 7 a + 8\right)\cdot 11 + \left(10 a^{6} + 5 a^{5} + 6 a^{4} + 9 a^{3} + 6 a^{2} + 5 a + 6\right)\cdot 11^{2} + \left(3 a^{6} + 7 a^{5} + 6 a^{4} + 3 a^{3} + a + 2\right)\cdot 11^{3} + \left(3 a^{6} + 6 a^{5} + 3 a^{3} + 3 a^{2} + 4 a + 5\right)\cdot 11^{4} + \left(3 a^{6} + 8 a^{5} + 9 a^{4} + 3 a^{3} + 3 a + 3\right)\cdot 11^{5} +O\left(11^{ 6 }\right)$
$r_{ 6 }$ $=$ $ 9 a^{6} + 3 a^{5} + 4 a^{4} + 2 a^{2} + 6 a + 9 + \left(8 a^{6} + 4 a^{5} + 2 a^{4} + a^{3} + 10 a^{2} + 2 a + 9\right)\cdot 11 + \left(9 a^{6} + 5 a^{4} + 6 a^{3} + 8 a^{2} + 10 a + 6\right)\cdot 11^{2} + \left(2 a^{6} + 10 a^{5} + 9 a^{4} + 4 a^{2} + 8 a + 3\right)\cdot 11^{3} + \left(7 a^{6} + 10 a^{4} + a^{3} + 8 a^{2} + 4 a + 1\right)\cdot 11^{4} + \left(7 a^{6} + 6 a^{5} + 5 a^{4} + 7 a^{3} + 9 a^{2} + 8 a + 1\right)\cdot 11^{5} +O\left(11^{ 6 }\right)$
$r_{ 7 }$ $=$ $ 9 a^{6} + 7 a^{5} + 3 a^{4} + 3 a^{3} + 2 a^{2} + 7 a + 9 + \left(a^{6} + 7 a^{5} + 5 a^{4} + 6 a^{3} + a^{2} + 9 a + 7\right)\cdot 11 + \left(2 a^{6} + 10 a^{5} + a^{4} + 9 a^{3} + 3 a^{2} + 9 a + 2\right)\cdot 11^{2} + \left(4 a^{6} + 9 a^{5} + 8 a^{4} + 8 a^{3} + 5 a^{2} + a\right)\cdot 11^{3} + \left(2 a^{6} + 6 a^{5} + 9 a^{4} + 8 a^{3} + 4 a^{2} + 2 a + 5\right)\cdot 11^{4} + \left(4 a^{5} + 2 a^{4} + 7 a^{3} + 3 a^{2} + a + 5\right)\cdot 11^{5} +O\left(11^{ 6 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 7 }$

Cycle notation
$(1,5,3,6,7,2,4)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 7 }$ Character value
$1$$1$$()$$1$
$1$$7$$(1,5,3,6,7,2,4)$$\zeta_{7}^{5}$
$1$$7$$(1,3,7,4,5,6,2)$$\zeta_{7}^{3}$
$1$$7$$(1,6,4,3,2,5,7)$$\zeta_{7}$
$1$$7$$(1,7,5,2,3,4,6)$$-\zeta_{7}^{5} - \zeta_{7}^{4} - \zeta_{7}^{3} - \zeta_{7}^{2} - \zeta_{7} - 1$
$1$$7$$(1,2,6,5,4,7,3)$$\zeta_{7}^{4}$
$1$$7$$(1,4,2,7,6,3,5)$$\zeta_{7}^{2}$
The blue line marks the conjugacy class containing complex conjugation.