Properties

Label 1.29.4t1.1c1
Dimension 1
Group $C_4$
Conductor $ 29 $
Root number not computed
Frobenius-Schur indicator 0

Related objects

Learn more about

Basic invariants

Dimension:$1$
Group:$C_4$
Conductor:$29 $
Artin number field: Splitting field of $f= x^{4} - x^{3} + 4 x^{2} - 20 x + 23 $ over $\Q$
Size of Galois orbit: 2
Smallest containing permutation representation: $C_4$
Parity: Odd
Corresponding Dirichlet character: \(\chi_{29}(17,\cdot)\)

Galois action

Roots of defining polynomial

The roots of $f$ are computed in $\Q_{ 23 }$ to precision 5.
Roots:
$r_{ 1 }$ $=$ $ 15\cdot 23 + 11\cdot 23^{2} + 16\cdot 23^{3} + 5\cdot 23^{4} +O\left(23^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 6 + 10\cdot 23 + 21\cdot 23^{2} + 4\cdot 23^{3} + 19\cdot 23^{4} +O\left(23^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 8 + 11\cdot 23^{2} + 9\cdot 23^{3} +O\left(23^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 10 + 20\cdot 23 + 23^{2} + 15\cdot 23^{3} + 20\cdot 23^{4} +O\left(23^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 4 }$

Cycle notation
$(1,2)(3,4)$
$(1,3,2,4)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 4 }$ Character value
$1$$1$$()$$1$
$1$$2$$(1,2)(3,4)$$-1$
$1$$4$$(1,3,2,4)$$\zeta_{4}$
$1$$4$$(1,4,2,3)$$-\zeta_{4}$
The blue line marks the conjugacy class containing complex conjugation.