Properties

Label 1.211.2t1.1c1
Dimension 1
Group $C_2$
Conductor $ 211 $
Root number 1
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$1$
Group:$C_2$
Conductor:$211 $
Artin number field: Splitting field of $f= x^{2} - x + 53 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $C_2$
Parity: Odd
Corresponding Dirichlet character: \(\displaystyle\left(\frac{-211}{\bullet}\right)\)

Galois action

Roots of defining polynomial

The roots of $f$ are computed in $\Q_{ 5 }$ to precision 5.
Roots: \[ \begin{aligned} r_{ 1 } &= 2 + 3\cdot 5 + 4\cdot 5^{2} + 2\cdot 5^{3} +O\left(5^{ 5 }\right) \\ r_{ 2 } &= 4 + 5 + 2\cdot 5^{3} + 4\cdot 5^{4} +O\left(5^{ 5 }\right) \\ \end{aligned}\]

Generators of the action on the roots $ r_{ 1 }, r_{ 2 } $

Cycle notation
$(1,2)$

Character values on conjugacy classes

SizeOrderAction on $ r_{ 1 }, r_{ 2 } $ Character value
$1$$1$$()$$1$
$1$$2$$(1,2)$$-1$
The blue line marks the conjugacy class containing complex conjugation.