Properties

Label 1.21.6t1.b
Dimension $1$
Group $C_6$
Conductor $21$
Indicator $0$

Related objects

Downloads

Learn more

Basic invariants

Dimension:$1$
Group:$C_6$
Conductor:\(21\)\(\medspace = 3 \cdot 7 \)
Artin number field: Galois closure of \(\Q(\zeta_{21})^+\)
Galois orbit size: $2$
Smallest permutation container: $C_6$
Parity: even
Projective image: $C_1$
Projective field: Galois closure of \(\Q\)

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 13 }$ to precision 5.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 13 }$: \( x^{2} + 12x + 2 \) Copy content Toggle raw display
Roots:
$r_{ 1 }$ $=$ \( 11 a + 9 + \left(5 a + 3\right)\cdot 13 + \left(9 a + 7\right)\cdot 13^{2} + \left(3 a + 5\right)\cdot 13^{3} + \left(2 a + 6\right)\cdot 13^{4} +O(13^{5})\) Copy content Toggle raw display
$r_{ 2 }$ $=$ \( 10 a + 4 + \left(9 a + 5\right)\cdot 13 + 12 a\cdot 13^{2} + 7 a\cdot 13^{3} + \left(12 a + 4\right)\cdot 13^{4} +O(13^{5})\) Copy content Toggle raw display
$r_{ 3 }$ $=$ \( 2 a + 7 + \left(7 a + 11\right)\cdot 13 + \left(3 a + 10\right)\cdot 13^{2} + \left(9 a + 12\right)\cdot 13^{3} + \left(10 a + 4\right)\cdot 13^{4} +O(13^{5})\) Copy content Toggle raw display
$r_{ 4 }$ $=$ \( 6 a + \left(12 a + 10\right)\cdot 13 + \left(8 a + 3\right)\cdot 13^{2} + \left(2 a + 9\right)\cdot 13^{3} + \left(9 a + 10\right)\cdot 13^{4} +O(13^{5})\) Copy content Toggle raw display
$r_{ 5 }$ $=$ \( 7 a + 6 + 3\cdot 13 + 4 a\cdot 13^{2} + \left(10 a + 3\right)\cdot 13^{3} + \left(3 a + 4\right)\cdot 13^{4} +O(13^{5})\) Copy content Toggle raw display
$r_{ 6 }$ $=$ \( 3 a + 1 + \left(3 a + 5\right)\cdot 13 + 3\cdot 13^{2} + \left(5 a + 8\right)\cdot 13^{3} + 8\cdot 13^{4} +O(13^{5})\) Copy content Toggle raw display

Generators of the action on the roots $r_1, \ldots, r_{ 6 }$

Cycle notation
$(1,2,4,3,6,5)$
$(1,3)(2,6)(4,5)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 6 }$ Character values
$c1$ $c2$
$1$ $1$ $()$ $1$ $1$
$1$ $2$ $(1,3)(2,6)(4,5)$ $-1$ $-1$
$1$ $3$ $(1,4,6)(2,3,5)$ $\zeta_{3}$ $-\zeta_{3} - 1$
$1$ $3$ $(1,6,4)(2,5,3)$ $-\zeta_{3} - 1$ $\zeta_{3}$
$1$ $6$ $(1,2,4,3,6,5)$ $\zeta_{3} + 1$ $-\zeta_{3}$
$1$ $6$ $(1,5,6,3,4,2)$ $-\zeta_{3}$ $\zeta_{3} + 1$
The blue line marks the conjugacy class containing complex conjugation.