Properties

Label 1.19.6t1.1c1
Dimension 1
Group $C_6$
Conductor $ 19 $
Root number not computed
Frobenius-Schur indicator 0

Related objects

Learn more about

Basic invariants

Dimension:$1$
Group:$C_6$
Conductor:$19 $
Artin number field: Splitting field of $f= x^{6} - x^{5} + 2 x^{4} + 8 x^{3} - x^{2} - 5 x + 7 $ over $\Q$
Size of Galois orbit: 2
Smallest containing permutation representation: $C_6$
Parity: Odd
Corresponding Dirichlet character: \(\chi_{19}(12,\cdot)\)

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 31 }$ to precision 5.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 31 }$: $ x^{2} + 29 x + 3 $
Roots:
$r_{ 1 }$ $=$ $ 17 a + 22 + \left(15 a + 9\right)\cdot 31 + \left(27 a + 14\right)\cdot 31^{2} + \left(15 a + 29\right)\cdot 31^{3} + \left(23 a + 19\right)\cdot 31^{4} +O\left(31^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 14 a + 25 + \left(15 a + 23\right)\cdot 31 + \left(3 a + 22\right)\cdot 31^{2} + \left(15 a + 2\right)\cdot 31^{3} + \left(7 a + 20\right)\cdot 31^{4} +O\left(31^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 10 a + 23 + \left(27 a + 13\right)\cdot 31 + \left(8 a + 26\right)\cdot 31^{2} + \left(15 a + 4\right)\cdot 31^{3} + \left(18 a + 30\right)\cdot 31^{4} +O\left(31^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 21 a + 12 + \left(3 a + 27\right)\cdot 31 + \left(22 a + 16\right)\cdot 31^{2} + \left(15 a + 26\right)\cdot 31^{3} + \left(12 a + 20\right)\cdot 31^{4} +O\left(31^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 11 a + 26 + 29\cdot 31 + \left(23 a + 29\right)\cdot 31^{2} + \left(17 a + 23\right)\cdot 31^{3} + \left(30 a + 25\right)\cdot 31^{4} +O\left(31^{ 5 }\right)$
$r_{ 6 }$ $=$ $ 20 a + 17 + \left(30 a + 19\right)\cdot 31 + \left(7 a + 13\right)\cdot 31^{2} + \left(13 a + 5\right)\cdot 31^{3} + 7\cdot 31^{4} +O\left(31^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 6 }$

Cycle notation
$(1,6,4,2,5,3)$
$(1,2)(3,4)(5,6)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 6 }$ Character value
$1$$1$$()$$1$
$1$$2$$(1,2)(3,4)(5,6)$$-1$
$1$$3$$(1,4,5)(2,3,6)$$\zeta_{3}$
$1$$3$$(1,5,4)(2,6,3)$$-\zeta_{3} - 1$
$1$$6$$(1,6,4,2,5,3)$$\zeta_{3} + 1$
$1$$6$$(1,3,5,2,4,6)$$-\zeta_{3}$
The blue line marks the conjugacy class containing complex conjugation.