Properties

Label 1.13_79.4t1.1c2
Dimension 1
Group $C_4$
Conductor $ 13 \cdot 79 $
Root number not computed
Frobenius-Schur indicator 0

Related objects

Learn more about

Basic invariants

Dimension:$1$
Group:$C_4$
Conductor:$1027= 13 \cdot 79 $
Artin number field: Splitting field of $f= x^{4} - x^{3} - 258 x^{2} - 256 x + 4943 $ over $\Q$
Size of Galois orbit: 2
Smallest containing permutation representation: $C_4$
Parity: Even
Corresponding Dirichlet character: \(\chi_{1027}(473,\cdot)\)

Galois action

Roots of defining polynomial

The roots of $f$ are computed in $\Q_{ 43 }$ to precision 5.
Roots:
$r_{ 1 }$ $=$ $ 1 + 23\cdot 43 + 9\cdot 43^{2} + 17\cdot 43^{3} + 23\cdot 43^{4} +O\left(43^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 9 + 13\cdot 43 + 4\cdot 43^{2} + 2\cdot 43^{3} + 26\cdot 43^{4} +O\left(43^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 11 + 18\cdot 43 + 31\cdot 43^{2} + 6\cdot 43^{3} + 43^{4} +O\left(43^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 23 + 31\cdot 43 + 40\cdot 43^{2} + 16\cdot 43^{3} + 35\cdot 43^{4} +O\left(43^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 4 }$

Cycle notation
$(1,4,3,2)$
$(1,3)(2,4)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 4 }$ Character value
$1$$1$$()$$1$
$1$$2$$(1,3)(2,4)$$-1$
$1$$4$$(1,4,3,2)$$-\zeta_{4}$
$1$$4$$(1,2,3,4)$$\zeta_{4}$
The blue line marks the conjugacy class containing complex conjugation.