Properties

Label 1.117.3t1.b
Dimension 1
Group $C_3$
Conductor $ 3^{2} \cdot 13 $
Frobenius-Schur indicator 0

Related objects

Learn more about

Basic invariants

Dimension:$1$
Group:$C_3$
Conductor:$117= 3^{2} \cdot 13 $
Artin number field: Splitting field of $f= x^{3} - 39 x - 26 $ over $\Q$
Size of Galois orbit: 2
Smallest containing permutation representation: $C_3$
Parity: Even
Projective image: $C_1$
Projective field: \(\Q\)

Galois action

Roots of defining polynomial

The roots of $f$ are computed in $\Q_{ 11 }$ to precision 5.
Roots:
$r_{ 1 }$ $=$ $ 6 + 5\cdot 11 + 11^{2} + 10\cdot 11^{3} + 11^{4} +O\left(11^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 7 + 2\cdot 11 + 8\cdot 11^{2} + 10\cdot 11^{3} + 3\cdot 11^{4} +O\left(11^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 9 + 2\cdot 11 + 11^{2} + 11^{3} + 5\cdot 11^{4} +O\left(11^{ 5 }\right)$

Generators of the action on the roots $ r_{ 1 }, r_{ 2 }, r_{ 3 } $

Cycle notation
$(1,2,3)$

Character values on conjugacy classes

SizeOrderAction on $ r_{ 1 }, r_{ 2 }, r_{ 3 } $ Character values
$c1$ $c2$
$1$ $1$ $()$ $1$ $1$
$1$ $3$ $(1,2,3)$ $\zeta_{3}$ $-\zeta_{3} - 1$
$1$ $3$ $(1,3,2)$ $-\zeta_{3} - 1$ $\zeta_{3}$
The blue line marks the conjugacy class containing complex conjugation.