Properties

Label 1.109.6t1.1c1
Dimension 1
Group $C_6$
Conductor $ 109 $
Root number not computed
Frobenius-Schur indicator 0

Related objects

Learn more about

Basic invariants

Dimension:$1$
Group:$C_6$
Conductor:$109 $
Artin number field: Splitting field of $f= x^{6} - x^{5} - 45 x^{4} + 10 x^{3} + 135 x^{2} - 9 x - 27 $ over $\Q$
Size of Galois orbit: 2
Smallest containing permutation representation: $C_6$
Parity: Even
Corresponding Dirichlet character: \(\chi_{109}(46,\cdot)\)

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 17 }$ to precision 5.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 17 }$: $ x^{2} + 16 x + 3 $
Roots:
$r_{ 1 }$ $=$ $ 13 a + \left(4 a + 9\right)\cdot 17 + \left(6 a + 4\right)\cdot 17^{2} + \left(15 a + 15\right)\cdot 17^{3} + \left(7 a + 14\right)\cdot 17^{4} +O\left(17^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 4 a + 13 + 12 a\cdot 17 + \left(10 a + 6\right)\cdot 17^{2} + \left(a + 7\right)\cdot 17^{3} + \left(9 a + 7\right)\cdot 17^{4} +O\left(17^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 8 a + 1 + \left(13 a + 9\right)\cdot 17 + \left(9 a + 12\right)\cdot 17^{2} + \left(3 a + 14\right)\cdot 17^{3} + \left(11 a + 6\right)\cdot 17^{4} +O\left(17^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 3 a + 13 + \left(8 a + 14\right)\cdot 17 + \left(11 a + 7\right)\cdot 17^{2} + \left(8 a + 12\right)\cdot 17^{3} + \left(8 a + 3\right)\cdot 17^{4} +O\left(17^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 14 a + 16 + \left(8 a + 2\right)\cdot 17 + \left(5 a + 11\right)\cdot 17^{2} + \left(8 a + 9\right)\cdot 17^{3} + \left(8 a + 3\right)\cdot 17^{4} +O\left(17^{ 5 }\right)$
$r_{ 6 }$ $=$ $ 9 a + 9 + \left(3 a + 14\right)\cdot 17 + \left(7 a + 8\right)\cdot 17^{2} + \left(13 a + 8\right)\cdot 17^{3} + \left(5 a + 14\right)\cdot 17^{4} +O\left(17^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 6 }$

Cycle notation
$(1,4,6,2,5,3)$
$(1,2)(3,6)(4,5)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 6 }$ Character value
$1$$1$$()$$1$
$1$$2$$(1,2)(3,6)(4,5)$$-1$
$1$$3$$(1,6,5)(2,3,4)$$\zeta_{3}$
$1$$3$$(1,5,6)(2,4,3)$$-\zeta_{3} - 1$
$1$$6$$(1,4,6,2,5,3)$$\zeta_{3} + 1$
$1$$6$$(1,3,5,2,6,4)$$-\zeta_{3}$
The blue line marks the conjugacy class containing complex conjugation.